Ethereum Integration (#557)

* Clean up Ethereum

* Consistent contract address for deployed contracts

* Flesh out Router a bit

* Add a Deployer for DoS-less deployment

* Implement Router-finding

* Use CREATE2 helper present in ethers

* Move from CREATE2 to CREATE

Bit more streamlined for our use case.

* Document ethereum-serai

* Tidy tests a bit

* Test updateSeraiKey

* Use encodePacked for updateSeraiKey

* Take in the block hash to read state during

* Add a Sandbox contract to the Ethereum integration

* Add retrieval of transfers from Ethereum

* Add inInstruction function to the Router

* Augment our handling of InInstructions events with a check the transfer event also exists

* Have the Deployer error upon failed deployments

* Add --via-ir

* Make get_transaction test-only

We only used it to get transactions to confirm the resolution of Eventualities.
Eventualities need to be modularized. By introducing the dedicated
confirm_completion function, we remove the need for a non-test get_transaction
AND begin this modularization (by no longer explicitly grabbing a transaction
to check with).

* Modularize Eventuality

Almost fully-deprecates the Transaction trait for Completion. Replaces
Transaction ID with Claim.

* Modularize the Scheduler behind a trait

* Add an extremely basic account Scheduler

* Add nonce uses, key rotation to the account scheduler

* Only report the account Scheduler empty after transferring keys

Also ban payments to the branch/change/forward addresses.

* Make fns reliant on state test-only

* Start of an Ethereum integration for the processor

* Add a session to the Router to prevent updateSeraiKey replaying

This would only happen if an old key was rotated to again, which would require
n-of-n collusion (already ridiculous and a valid fault attributable event). It
just clarifies the formal arguments.

* Add a RouterCommand + SignMachine for producing it to coins/ethereum

* Ethereum which compiles

* Have branch/change/forward return an option

Also defines a UtxoNetwork extension trait for MAX_INPUTS.

* Make external_address exclusively a test fn

* Move the "account" scheduler to "smart contract"

* Remove ABI artifact

* Move refund/forward Plan creation into the Processor

We create forward Plans in the scan path, and need to know their exact fees in
the scan path. This requires adding a somewhat wonky shim_forward_plan method
so we can obtain a Plan equivalent to the actual forward Plan for fee reasons,
yet don't expect it to be the actual forward Plan (which may be distinct if
the Plan pulls from the global state, such as with a nonce).

Also properly types a Scheduler addendum such that the SC scheduler isn't
cramming the nonce to use into the N::Output type.

* Flesh out the Ethereum integration more

* Two commits ago, into the **Scheduler, not Processor

* Remove misc TODOs in SC Scheduler

* Add constructor to RouterCommandMachine

* RouterCommand read, pairing with the prior added write

* Further add serialization methods

* Have the Router's key included with the InInstruction

This does not use the key at the time of the event. This uses the key at the
end of the block for the event. Its much simpler than getting the full event
streams for each, checking when they interlace.

This does not read the state. Every block, this makes a request for every
single key update and simply chooses the last one. This allows pruning state,
only keeping the event tree. Ideally, we'd also introduce a cache to reduce the
cost of the filter (small in events yielded, long in blocks searched).

Since Serai doesn't have any forwarding TXs, nor Branches, nor change, all of
our Plans should solely have payments out, and there's no expectation of a Plan
being made under one key broken by it being received by another key.

* Add read/write to InInstruction

* Abstract the ABI for Call/OutInstruction in ethereum-serai

* Fill out signable_transaction for Ethereum

* Move ethereum-serai to alloy

Resolves #331.

* Use the opaque sol macro instead of generated files

* Move the processor over to the now-alloy-based ethereum-serai

* Use the ecrecover provided by alloy

* Have the SC use nonce for rotation, not session (an independent nonce which wasn't synchronized)

* Always use the latest keys for SC scheduled plans

* get_eventuality_completions for Ethereum

* Finish fleshing out the processor Ethereum integration as needed for serai-processor tests

This doesn't not support any actual deployments, not even the ones simulated by
serai-processor-docker-tests.

* Add alloy-simple-request-transport to the GH workflows

* cargo update

* Clarify a few comments and make one check more robust

* Use a string for 27.0 in .github

* Remove optional from no-longer-optional dependencies in processor

* Add alloy to git deny exception

* Fix no longer optional specification in processor's binaries feature

* Use a version of foundry from 2024

* Correct fetching Bitcoin TXs in the processor docker tests

* Update rustls to resolve RUSTSEC warnings

* Use the monthly nightly foundry, not the deleted daily nightly
This commit is contained in:
Luke Parker
2024-04-21 06:02:12 -04:00
committed by GitHub
parent 43083dfd49
commit 0f0db14f05
58 changed files with 5031 additions and 1385 deletions

View File

@@ -52,9 +52,10 @@ use crate::{
networks::{
NetworkError, Block as BlockTrait, OutputType, Output as OutputTrait,
Transaction as TransactionTrait, SignableTransaction as SignableTransactionTrait,
Eventuality as EventualityTrait, EventualitiesTracker, Network,
Eventuality as EventualityTrait, EventualitiesTracker, Network, UtxoNetwork,
},
Payment,
multisigs::scheduler::utxo::Scheduler,
};
#[derive(Clone, PartialEq, Eq, Debug)]
@@ -178,14 +179,6 @@ impl TransactionTrait<Bitcoin> for Transaction {
hash.reverse();
hash
}
fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.consensus_encode(&mut buf).unwrap();
buf
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
Transaction::consensus_decode(reader).map_err(|e| io::Error::other(format!("{e}")))
}
#[cfg(test)]
async fn fee(&self, network: &Bitcoin) -> u64 {
@@ -209,7 +202,23 @@ impl TransactionTrait<Bitcoin> for Transaction {
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Eventuality([u8; 32]);
#[derive(Clone, PartialEq, Eq, Default, Debug)]
pub struct EmptyClaim;
impl AsRef<[u8]> for EmptyClaim {
fn as_ref(&self) -> &[u8] {
&[]
}
}
impl AsMut<[u8]> for EmptyClaim {
fn as_mut(&mut self) -> &mut [u8] {
&mut []
}
}
impl EventualityTrait for Eventuality {
type Claim = EmptyClaim;
type Completion = Transaction;
fn lookup(&self) -> Vec<u8> {
self.0.to_vec()
}
@@ -224,6 +233,18 @@ impl EventualityTrait for Eventuality {
fn serialize(&self) -> Vec<u8> {
self.0.to_vec()
}
fn claim(_: &Transaction) -> EmptyClaim {
EmptyClaim
}
fn serialize_completion(completion: &Transaction) -> Vec<u8> {
let mut buf = vec![];
completion.consensus_encode(&mut buf).unwrap();
buf
}
fn read_completion<R: io::Read>(reader: &mut R) -> io::Result<Transaction> {
Transaction::consensus_decode(reader).map_err(|e| io::Error::other(format!("{e}")))
}
}
#[derive(Clone, Debug)]
@@ -374,8 +395,12 @@ impl Bitcoin {
for input in &tx.input {
let mut input_tx = input.previous_output.txid.to_raw_hash().to_byte_array();
input_tx.reverse();
in_value += self.get_transaction(&input_tx).await?.output
[usize::try_from(input.previous_output.vout).unwrap()]
in_value += self
.rpc
.get_transaction(&input_tx)
.await
.map_err(|_| NetworkError::ConnectionError)?
.output[usize::try_from(input.previous_output.vout).unwrap()]
.value
.to_sat();
}
@@ -537,6 +562,25 @@ impl Bitcoin {
}
}
// Bitcoin has a max weight of 400,000 (MAX_STANDARD_TX_WEIGHT)
// A non-SegWit TX will have 4 weight units per byte, leaving a max size of 100,000 bytes
// While our inputs are entirely SegWit, such fine tuning is not necessary and could create
// issues in the future (if the size decreases or we misevaluate it)
// It also offers a minimal amount of benefit when we are able to logarithmically accumulate
// inputs
// For 128-byte inputs (36-byte output specification, 64-byte signature, whatever overhead) and
// 64-byte outputs (40-byte script, 8-byte amount, whatever overhead), they together take up 192
// bytes
// 100,000 / 192 = 520
// 520 * 192 leaves 160 bytes of overhead for the transaction structure itself
const MAX_INPUTS: usize = 520;
const MAX_OUTPUTS: usize = 520;
fn address_from_key(key: ProjectivePoint) -> Address {
Address::new(BAddress::<NetworkChecked>::new(BNetwork::Bitcoin, address_payload(key).unwrap()))
.unwrap()
}
#[async_trait]
impl Network for Bitcoin {
type Curve = Secp256k1;
@@ -549,6 +593,8 @@ impl Network for Bitcoin {
type Eventuality = Eventuality;
type TransactionMachine = TransactionMachine;
type Scheduler = Scheduler<Bitcoin>;
type Address = Address;
const NETWORK: NetworkId = NetworkId::Bitcoin;
@@ -598,19 +644,7 @@ impl Network for Bitcoin {
// aggregation TX
const COST_TO_AGGREGATE: u64 = 800;
// Bitcoin has a max weight of 400,000 (MAX_STANDARD_TX_WEIGHT)
// A non-SegWit TX will have 4 weight units per byte, leaving a max size of 100,000 bytes
// While our inputs are entirely SegWit, such fine tuning is not necessary and could create
// issues in the future (if the size decreases or we misevaluate it)
// It also offers a minimal amount of benefit when we are able to logarithmically accumulate
// inputs
// For 128-byte inputs (36-byte output specification, 64-byte signature, whatever overhead) and
// 64-byte outputs (40-byte script, 8-byte amount, whatever overhead), they together take up 192
// bytes
// 100,000 / 192 = 520
// 520 * 192 leaves 160 bytes of overhead for the transaction structure itself
const MAX_INPUTS: usize = 520;
const MAX_OUTPUTS: usize = 520;
const MAX_OUTPUTS: usize = MAX_OUTPUTS;
fn tweak_keys(keys: &mut ThresholdKeys<Self::Curve>) {
*keys = tweak_keys(keys);
@@ -618,24 +652,24 @@ impl Network for Bitcoin {
scanner(keys.group_key());
}
fn external_address(key: ProjectivePoint) -> Address {
Address::new(BAddress::<NetworkChecked>::new(BNetwork::Bitcoin, address_payload(key).unwrap()))
.unwrap()
#[cfg(test)]
async fn external_address(&self, key: ProjectivePoint) -> Address {
address_from_key(key)
}
fn branch_address(key: ProjectivePoint) -> Address {
fn branch_address(key: ProjectivePoint) -> Option<Address> {
let (_, offsets, _) = scanner(key);
Self::external_address(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Branch]))
Some(address_from_key(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Branch])))
}
fn change_address(key: ProjectivePoint) -> Address {
fn change_address(key: ProjectivePoint) -> Option<Address> {
let (_, offsets, _) = scanner(key);
Self::external_address(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Change]))
Some(address_from_key(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Change])))
}
fn forward_address(key: ProjectivePoint) -> Address {
fn forward_address(key: ProjectivePoint) -> Option<Address> {
let (_, offsets, _) = scanner(key);
Self::external_address(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Forwarded]))
Some(address_from_key(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Forwarded])))
}
async fn get_latest_block_number(&self) -> Result<usize, NetworkError> {
@@ -682,7 +716,7 @@ impl Network for Bitcoin {
spent_tx.reverse();
let mut tx;
while {
tx = self.get_transaction(&spent_tx).await;
tx = self.rpc.get_transaction(&spent_tx).await;
tx.is_err()
} {
log::error!("couldn't get transaction from bitcoin node: {tx:?}");
@@ -710,7 +744,7 @@ impl Network for Bitcoin {
&self,
eventualities: &mut EventualitiesTracker<Eventuality>,
block: &Self::Block,
) -> HashMap<[u8; 32], (usize, Transaction)> {
) -> HashMap<[u8; 32], (usize, [u8; 32], Transaction)> {
let mut res = HashMap::new();
if eventualities.map.is_empty() {
return res;
@@ -719,11 +753,11 @@ impl Network for Bitcoin {
fn check_block(
eventualities: &mut EventualitiesTracker<Eventuality>,
block: &Block,
res: &mut HashMap<[u8; 32], (usize, Transaction)>,
res: &mut HashMap<[u8; 32], (usize, [u8; 32], Transaction)>,
) {
for tx in &block.txdata[1 ..] {
if let Some((plan, _)) = eventualities.map.remove(tx.id().as_slice()) {
res.insert(plan, (eventualities.block_number, tx.clone()));
res.insert(plan, (eventualities.block_number, tx.id(), tx.clone()));
}
}
@@ -770,7 +804,6 @@ impl Network for Bitcoin {
async fn needed_fee(
&self,
block_number: usize,
_: &[u8; 32],
inputs: &[Output],
payments: &[Payment<Self>],
change: &Option<Address>,
@@ -787,9 +820,11 @@ impl Network for Bitcoin {
&self,
block_number: usize,
plan_id: &[u8; 32],
_key: ProjectivePoint,
inputs: &[Output],
payments: &[Payment<Self>],
change: &Option<Address>,
(): &(),
) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError> {
Ok(self.make_signable_transaction(block_number, inputs, payments, change, false).await?.map(
|signable| {
@@ -803,7 +838,7 @@ impl Network for Bitcoin {
))
}
async fn attempt_send(
async fn attempt_sign(
&self,
keys: ThresholdKeys<Self::Curve>,
transaction: Self::SignableTransaction,
@@ -817,7 +852,7 @@ impl Network for Bitcoin {
)
}
async fn publish_transaction(&self, tx: &Self::Transaction) -> Result<(), NetworkError> {
async fn publish_completion(&self, tx: &Transaction) -> Result<(), NetworkError> {
match self.rpc.send_raw_transaction(tx).await {
Ok(_) => (),
Err(RpcError::ConnectionError) => Err(NetworkError::ConnectionError)?,
@@ -828,12 +863,14 @@ impl Network for Bitcoin {
Ok(())
}
async fn get_transaction(&self, id: &[u8; 32]) -> Result<Transaction, NetworkError> {
self.rpc.get_transaction(id).await.map_err(|_| NetworkError::ConnectionError)
}
fn confirm_completion(&self, eventuality: &Self::Eventuality, tx: &Transaction) -> bool {
eventuality.0 == tx.id()
async fn confirm_completion(
&self,
eventuality: &Self::Eventuality,
_: &EmptyClaim,
) -> Result<Option<Transaction>, NetworkError> {
Ok(Some(
self.rpc.get_transaction(&eventuality.0).await.map_err(|_| NetworkError::ConnectionError)?,
))
}
#[cfg(test)]
@@ -841,6 +878,20 @@ impl Network for Bitcoin {
self.rpc.get_block_number(id).await.unwrap()
}
#[cfg(test)]
async fn check_eventuality_by_claim(
&self,
eventuality: &Self::Eventuality,
_: &EmptyClaim,
) -> bool {
self.rpc.get_transaction(&eventuality.0).await.is_ok()
}
#[cfg(test)]
async fn get_transaction_by_eventuality(&self, _: usize, id: &Eventuality) -> Transaction {
self.rpc.get_transaction(&id.0).await.unwrap()
}
#[cfg(test)]
async fn mine_block(&self) {
self
@@ -892,3 +943,7 @@ impl Network for Bitcoin {
self.get_block(block).await.unwrap()
}
}
impl UtxoNetwork for Bitcoin {
const MAX_INPUTS: usize = MAX_INPUTS;
}

View File

@@ -0,0 +1,827 @@
use core::{fmt::Debug, time::Duration};
use std::{
sync::Arc,
collections::{HashSet, HashMap},
io,
};
use async_trait::async_trait;
use ciphersuite::{group::GroupEncoding, Ciphersuite, Secp256k1};
use frost::ThresholdKeys;
use ethereum_serai::{
alloy_core::primitives::U256,
alloy_rpc_types::{BlockNumberOrTag, Transaction},
alloy_simple_request_transport::SimpleRequest,
alloy_rpc_client::ClientBuilder,
alloy_provider::{Provider, RootProvider},
crypto::{PublicKey, Signature},
deployer::Deployer,
router::{Router, Coin as EthereumCoin, InInstruction as EthereumInInstruction},
machine::*,
};
#[cfg(test)]
use ethereum_serai::alloy_core::primitives::B256;
use tokio::{
time::sleep,
sync::{RwLock, RwLockReadGuard},
};
use serai_client::{
primitives::{Coin, Amount, Balance, NetworkId},
validator_sets::primitives::Session,
};
use crate::{
Db, Payment,
networks::{
OutputType, Output, Transaction as TransactionTrait, SignableTransaction, Block,
Eventuality as EventualityTrait, EventualitiesTracker, NetworkError, Network,
},
key_gen::NetworkKeyDb,
multisigs::scheduler::{
Scheduler as SchedulerTrait,
smart_contract::{Addendum, Scheduler},
},
};
#[cfg(not(test))]
const DAI: [u8; 20] =
match const_hex::const_decode_to_array(b"0x6B175474E89094C44Da98b954EedeAC495271d0F") {
Ok(res) => res,
Err(_) => panic!("invalid non-test DAI hex address"),
};
#[cfg(test)] // TODO
const DAI: [u8; 20] =
match const_hex::const_decode_to_array(b"0000000000000000000000000000000000000000") {
Ok(res) => res,
Err(_) => panic!("invalid test DAI hex address"),
};
fn coin_to_serai_coin(coin: &EthereumCoin) -> Option<Coin> {
match coin {
EthereumCoin::Ether => Some(Coin::Ether),
EthereumCoin::Erc20(token) => {
if *token == DAI {
return Some(Coin::Dai);
}
None
}
}
}
fn amount_to_serai_amount(coin: Coin, amount: U256) -> Amount {
assert_eq!(coin.network(), NetworkId::Ethereum);
assert_eq!(coin.decimals(), 8);
// Remove 10 decimals so we go from 18 decimals to 8 decimals
let divisor = U256::from(10_000_000_000u64);
// This is valid up to 184b, which is assumed for the coins allowed
Amount(u64::try_from(amount / divisor).unwrap())
}
fn balance_to_ethereum_amount(balance: Balance) -> U256 {
assert_eq!(balance.coin.network(), NetworkId::Ethereum);
assert_eq!(balance.coin.decimals(), 8);
// Restore 10 decimals so we go from 8 decimals to 18 decimals
let factor = U256::from(10_000_000_000u64);
U256::from(balance.amount.0) * factor
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Address(pub [u8; 20]);
impl TryFrom<Vec<u8>> for Address {
type Error = ();
fn try_from(bytes: Vec<u8>) -> Result<Address, ()> {
if bytes.len() != 20 {
Err(())?;
}
let mut res = [0; 20];
res.copy_from_slice(&bytes);
Ok(Address(res))
}
}
impl TryInto<Vec<u8>> for Address {
type Error = ();
fn try_into(self) -> Result<Vec<u8>, ()> {
Ok(self.0.to_vec())
}
}
impl ToString for Address {
fn to_string(&self) -> String {
ethereum_serai::alloy_core::primitives::Address::from(self.0).to_string()
}
}
impl SignableTransaction for RouterCommand {
fn fee(&self) -> u64 {
// Return a fee of 0 as we'll handle amortization on our end
0
}
}
#[async_trait]
impl<D: Debug + Db> TransactionTrait<Ethereum<D>> for Transaction {
type Id = [u8; 32];
fn id(&self) -> Self::Id {
self.hash.0
}
#[cfg(test)]
async fn fee(&self, _network: &Ethereum<D>) -> u64 {
// Return a fee of 0 as we'll handle amortization on our end
0
}
}
// We use 32-block Epochs to represent blocks.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Epoch {
// The hash of the block which ended the prior Epoch.
prior_end_hash: [u8; 32],
// The first block number within this Epoch.
start: u64,
// The hash of the last block within this Epoch.
end_hash: [u8; 32],
// The monotonic time for this Epoch.
time: u64,
}
impl Epoch {
fn end(&self) -> u64 {
self.start + 31
}
}
#[async_trait]
impl<D: Debug + Db> Block<Ethereum<D>> for Epoch {
type Id = [u8; 32];
fn id(&self) -> [u8; 32] {
self.end_hash
}
fn parent(&self) -> [u8; 32] {
self.prior_end_hash
}
async fn time(&self, _: &Ethereum<D>) -> u64 {
self.time
}
}
impl<D: Debug + Db> Output<Ethereum<D>> for EthereumInInstruction {
type Id = [u8; 32];
fn kind(&self) -> OutputType {
OutputType::External
}
fn id(&self) -> Self::Id {
let mut id = [0; 40];
id[.. 32].copy_from_slice(&self.id.0);
id[32 ..].copy_from_slice(&self.id.1.to_le_bytes());
*ethereum_serai::alloy_core::primitives::keccak256(id)
}
fn tx_id(&self) -> [u8; 32] {
self.id.0
}
fn key(&self) -> <Secp256k1 as Ciphersuite>::G {
self.key_at_end_of_block
}
fn presumed_origin(&self) -> Option<Address> {
Some(Address(self.from))
}
fn balance(&self) -> Balance {
let coin = coin_to_serai_coin(&self.coin).unwrap_or_else(|| {
panic!(
"requesting coin for an EthereumInInstruction with a coin {}",
"we don't handle. this never should have been yielded"
)
});
Balance { coin, amount: amount_to_serai_amount(coin, self.amount) }
}
fn data(&self) -> &[u8] {
&self.data
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
EthereumInInstruction::write(self, writer)
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
EthereumInInstruction::read(reader)
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Claim {
signature: [u8; 64],
}
impl AsRef<[u8]> for Claim {
fn as_ref(&self) -> &[u8] {
&self.signature
}
}
impl AsMut<[u8]> for Claim {
fn as_mut(&mut self) -> &mut [u8] {
&mut self.signature
}
}
impl Default for Claim {
fn default() -> Self {
Self { signature: [0; 64] }
}
}
impl From<&Signature> for Claim {
fn from(sig: &Signature) -> Self {
Self { signature: sig.to_bytes() }
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Eventuality(PublicKey, RouterCommand);
impl EventualityTrait for Eventuality {
type Claim = Claim;
type Completion = SignedRouterCommand;
fn lookup(&self) -> Vec<u8> {
match self.1 {
RouterCommand::UpdateSeraiKey { nonce, .. } | RouterCommand::Execute { nonce, .. } => {
nonce.as_le_bytes().to_vec()
}
}
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let point = Secp256k1::read_G(reader)?;
let command = RouterCommand::read(reader)?;
Ok(Eventuality(
PublicKey::new(point).ok_or(io::Error::other("unusable key within Eventuality"))?,
command,
))
}
fn serialize(&self) -> Vec<u8> {
let mut res = vec![];
res.extend(self.0.point().to_bytes().as_slice());
self.1.write(&mut res).unwrap();
res
}
fn claim(completion: &Self::Completion) -> Self::Claim {
Claim::from(completion.signature())
}
fn serialize_completion(completion: &Self::Completion) -> Vec<u8> {
let mut res = vec![];
completion.write(&mut res).unwrap();
res
}
fn read_completion<R: io::Read>(reader: &mut R) -> io::Result<Self::Completion> {
SignedRouterCommand::read(reader)
}
}
#[derive(Clone, Debug)]
pub struct Ethereum<D: Debug + Db> {
// This DB is solely used to access the first key generated, as needed to determine the Router's
// address. Accordingly, all methods present are consistent to a Serai chain with a finalized
// first key (regardless of local state), and this is safe.
db: D,
provider: Arc<RootProvider<SimpleRequest>>,
deployer: Deployer,
router: Arc<RwLock<Option<Router>>>,
}
impl<D: Debug + Db> PartialEq for Ethereum<D> {
fn eq(&self, _other: &Ethereum<D>) -> bool {
true
}
}
impl<D: Debug + Db> Ethereum<D> {
pub async fn new(db: D, url: String) -> Self {
let provider = Arc::new(RootProvider::new(
ClientBuilder::default().transport(SimpleRequest::new(url), true),
));
#[cfg(test)] // TODO: Move to test code
provider.raw_request::<_, ()>("evm_setAutomine".into(), false).await.unwrap();
let mut deployer = Deployer::new(provider.clone()).await;
while !matches!(deployer, Ok(Some(_))) {
log::error!("Deployer wasn't deployed yet or networking error");
sleep(Duration::from_secs(5)).await;
deployer = Deployer::new(provider.clone()).await;
}
let deployer = deployer.unwrap().unwrap();
Ethereum { db, provider, deployer, router: Arc::new(RwLock::new(None)) }
}
// Obtain a reference to the Router, sleeping until it's deployed if it hasn't already been.
// This is guaranteed to return Some.
pub async fn router(&self) -> RwLockReadGuard<'_, Option<Router>> {
// If we've already instantiated the Router, return a read reference
{
let router = self.router.read().await;
if router.is_some() {
return router;
}
}
// Instantiate it
let mut router = self.router.write().await;
// If another attempt beat us to it, return
if router.is_some() {
drop(router);
return self.router.read().await;
}
// Get the first key from the DB
let first_key =
NetworkKeyDb::get(&self.db, Session(0)).expect("getting outputs before confirming a key");
let key = Secp256k1::read_G(&mut first_key.as_slice()).unwrap();
let public_key = PublicKey::new(key).unwrap();
// Find the router
let mut found = self.deployer.find_router(self.provider.clone(), &public_key).await;
while !matches!(found, Ok(Some(_))) {
log::error!("Router wasn't deployed yet or networking error");
sleep(Duration::from_secs(5)).await;
found = self.deployer.find_router(self.provider.clone(), &public_key).await;
}
// Set it
*router = Some(found.unwrap().unwrap());
// Downgrade to a read lock
// Explicitly doesn't use `downgrade` so that another pending write txn can realize it's no
// longer necessary
drop(router);
self.router.read().await
}
}
#[async_trait]
impl<D: Debug + Db> Network for Ethereum<D> {
type Curve = Secp256k1;
type Transaction = Transaction;
type Block = Epoch;
type Output = EthereumInInstruction;
type SignableTransaction = RouterCommand;
type Eventuality = Eventuality;
type TransactionMachine = RouterCommandMachine;
type Scheduler = Scheduler<Self>;
type Address = Address;
const NETWORK: NetworkId = NetworkId::Ethereum;
const ID: &'static str = "Ethereum";
const ESTIMATED_BLOCK_TIME_IN_SECONDS: usize = 32 * 12;
const CONFIRMATIONS: usize = 1;
const DUST: u64 = 0; // TODO
const COST_TO_AGGREGATE: u64 = 0;
// TODO: usize::max, with a merkle tree in the router
const MAX_OUTPUTS: usize = 256;
fn tweak_keys(keys: &mut ThresholdKeys<Self::Curve>) {
while PublicKey::new(keys.group_key()).is_none() {
*keys = keys.offset(<Secp256k1 as Ciphersuite>::F::ONE);
}
}
#[cfg(test)]
async fn external_address(&self, _key: <Secp256k1 as Ciphersuite>::G) -> Address {
Address(self.router().await.as_ref().unwrap().address())
}
fn branch_address(_key: <Secp256k1 as Ciphersuite>::G) -> Option<Address> {
None
}
fn change_address(_key: <Secp256k1 as Ciphersuite>::G) -> Option<Address> {
None
}
fn forward_address(_key: <Secp256k1 as Ciphersuite>::G) -> Option<Address> {
None
}
async fn get_latest_block_number(&self) -> Result<usize, NetworkError> {
let actual_number = self
.provider
.get_block(BlockNumberOrTag::Finalized.into(), false)
.await
.map_err(|_| NetworkError::ConnectionError)?
.expect("no blocks were finalized")
.header
.number
.unwrap();
// Error if there hasn't been a full epoch yet
if actual_number < 32 {
Err(NetworkError::ConnectionError)?
}
// If this is 33, the division will return 1, yet 1 is the epoch in progress
let latest_full_epoch = (actual_number / 32).saturating_sub(1);
Ok(latest_full_epoch.try_into().unwrap())
}
async fn get_block(&self, number: usize) -> Result<Self::Block, NetworkError> {
let latest_finalized = self.get_latest_block_number().await?;
if number > latest_finalized {
Err(NetworkError::ConnectionError)?
}
let start = number * 32;
let prior_end_hash = if start == 0 {
[0; 32]
} else {
self
.provider
.get_block(u64::try_from(start - 1).unwrap().into(), false)
.await
.ok()
.flatten()
.ok_or(NetworkError::ConnectionError)?
.header
.hash
.unwrap()
.into()
};
let end_header = self
.provider
.get_block(u64::try_from(start + 31).unwrap().into(), false)
.await
.ok()
.flatten()
.ok_or(NetworkError::ConnectionError)?
.header;
let end_hash = end_header.hash.unwrap().into();
let time = end_header.timestamp;
Ok(Epoch { prior_end_hash, start: start.try_into().unwrap(), end_hash, time })
}
async fn get_outputs(
&self,
block: &Self::Block,
_: <Secp256k1 as Ciphersuite>::G,
) -> Vec<Self::Output> {
let router = self.router().await;
let router = router.as_ref().unwrap();
// TODO: Top-level transfers
let mut all_events = vec![];
for block in block.start .. (block.start + 32) {
let mut events = router.in_instructions(block, &HashSet::from([DAI])).await;
while let Err(e) = events {
log::error!("couldn't connect to Ethereum node for the Router's events: {e:?}");
sleep(Duration::from_secs(5)).await;
events = router.in_instructions(block, &HashSet::from([DAI])).await;
}
all_events.extend(events.unwrap());
}
for event in &all_events {
assert!(
coin_to_serai_coin(&event.coin).is_some(),
"router yielded events for unrecognized coins"
);
}
all_events
}
async fn get_eventuality_completions(
&self,
eventualities: &mut EventualitiesTracker<Self::Eventuality>,
block: &Self::Block,
) -> HashMap<
[u8; 32],
(
usize,
<Self::Transaction as TransactionTrait<Self>>::Id,
<Self::Eventuality as EventualityTrait>::Completion,
),
> {
let mut res = HashMap::new();
if eventualities.map.is_empty() {
return res;
}
let router = self.router().await;
let router = router.as_ref().unwrap();
let past_scanned_epoch = loop {
match self.get_block(eventualities.block_number).await {
Ok(block) => break block,
Err(e) => log::error!("couldn't get the last scanned block in the tracker: {}", e),
}
sleep(Duration::from_secs(10)).await;
};
assert_eq!(
past_scanned_epoch.start / 32,
u64::try_from(eventualities.block_number).unwrap(),
"assumption of tracker block number's relation to epoch start is incorrect"
);
// Iterate from after the epoch number in the tracker to the end of this epoch
for block_num in (past_scanned_epoch.end() + 1) ..= block.end() {
let executed = loop {
match router.executed_commands(block_num).await {
Ok(executed) => break executed,
Err(e) => log::error!("couldn't get the executed commands in block {block_num}: {e}"),
}
sleep(Duration::from_secs(10)).await;
};
for executed in executed {
let lookup = executed.nonce.to_le_bytes().to_vec();
if let Some((plan_id, eventuality)) = eventualities.map.get(&lookup) {
if let Some(command) =
SignedRouterCommand::new(&eventuality.0, eventuality.1.clone(), &executed.signature)
{
res.insert(*plan_id, (block_num.try_into().unwrap(), executed.tx_id, command));
eventualities.map.remove(&lookup);
}
}
}
}
eventualities.block_number = (block.start / 32).try_into().unwrap();
res
}
async fn needed_fee(
&self,
_block_number: usize,
inputs: &[Self::Output],
_payments: &[Payment<Self>],
_change: &Option<Self::Address>,
) -> Result<Option<u64>, NetworkError> {
assert_eq!(inputs.len(), 0);
// Claim no fee is needed so we can perform amortization ourselves
Ok(Some(0))
}
async fn signable_transaction(
&self,
_block_number: usize,
_plan_id: &[u8; 32],
key: <Self::Curve as Ciphersuite>::G,
inputs: &[Self::Output],
payments: &[Payment<Self>],
change: &Option<Self::Address>,
scheduler_addendum: &<Self::Scheduler as SchedulerTrait<Self>>::Addendum,
) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError> {
assert_eq!(inputs.len(), 0);
assert!(change.is_none());
let chain_id = self.provider.get_chain_id().await.map_err(|_| NetworkError::ConnectionError)?;
// TODO: Perform fee amortization (in scheduler?
// TODO: Make this function internal and have needed_fee properly return None as expected?
// TODO: signable_transaction is written as cannot return None if needed_fee returns Some
// TODO: Why can this return None at all if it isn't allowed to return None?
let command = match scheduler_addendum {
Addendum::Nonce(nonce) => RouterCommand::Execute {
chain_id: U256::try_from(chain_id).unwrap(),
nonce: U256::try_from(*nonce).unwrap(),
outs: payments
.iter()
.filter_map(|payment| {
Some(OutInstruction {
target: if let Some(data) = payment.data.as_ref() {
// This introspects the Call serialization format, expecting the first 20 bytes to
// be the address
// This avoids wasting the 20-bytes allocated within address
let full_data = [payment.address.0.as_slice(), data].concat();
let mut reader = full_data.as_slice();
let mut calls = vec![];
while !reader.is_empty() {
calls.push(Call::read(&mut reader).ok()?)
}
// The above must have executed at least once since reader contains the address
assert_eq!(calls[0].to, payment.address.0);
OutInstructionTarget::Calls(calls)
} else {
OutInstructionTarget::Direct(payment.address.0)
},
value: {
assert_eq!(payment.balance.coin, Coin::Ether); // TODO
balance_to_ethereum_amount(payment.balance)
},
})
})
.collect(),
},
Addendum::RotateTo { nonce, new_key } => {
assert!(payments.is_empty());
RouterCommand::UpdateSeraiKey {
chain_id: U256::try_from(chain_id).unwrap(),
nonce: U256::try_from(*nonce).unwrap(),
key: PublicKey::new(*new_key).expect("new key wasn't a valid ETH public key"),
}
}
};
Ok(Some((
command.clone(),
Eventuality(PublicKey::new(key).expect("key wasn't a valid ETH public key"), command),
)))
}
async fn attempt_sign(
&self,
keys: ThresholdKeys<Self::Curve>,
transaction: Self::SignableTransaction,
) -> Result<Self::TransactionMachine, NetworkError> {
Ok(
RouterCommandMachine::new(keys, transaction)
.expect("keys weren't usable to sign router commands"),
)
}
async fn publish_completion(
&self,
completion: &<Self::Eventuality as EventualityTrait>::Completion,
) -> Result<(), NetworkError> {
// Publish this to the dedicated TX server for a solver to actually publish
#[cfg(not(test))]
{
let _ = completion;
todo!("TODO");
}
// Publish this using a dummy account we fund with magic RPC commands
#[cfg(test)]
{
use rand_core::OsRng;
use ciphersuite::group::ff::Field;
let key = <Secp256k1 as Ciphersuite>::F::random(&mut OsRng);
let address = ethereum_serai::crypto::address(&(Secp256k1::generator() * key));
// Set a 1.1 ETH balance
self
.provider
.raw_request::<_, ()>(
"anvil_setBalance".into(),
[Address(address).to_string(), "1100000000000000000".into()],
)
.await
.unwrap();
let router = self.router().await;
let router = router.as_ref().unwrap();
let mut tx = match completion.command() {
RouterCommand::UpdateSeraiKey { key, .. } => {
router.update_serai_key(key, completion.signature())
}
RouterCommand::Execute { outs, .. } => router.execute(
&outs.iter().cloned().map(Into::into).collect::<Vec<_>>(),
completion.signature(),
),
};
tx.gas_price = 100_000_000_000u128;
use ethereum_serai::alloy_consensus::SignableTransaction;
let sig =
k256::ecdsa::SigningKey::from(k256::elliptic_curve::NonZeroScalar::new(key).unwrap())
.sign_prehash_recoverable(tx.signature_hash().as_ref())
.unwrap();
let mut bytes = vec![];
tx.encode_with_signature_fields(&sig.into(), &mut bytes);
let _ = self.provider.send_raw_transaction(&bytes).await.ok().unwrap();
Ok(())
}
}
async fn confirm_completion(
&self,
eventuality: &Self::Eventuality,
claim: &<Self::Eventuality as EventualityTrait>::Claim,
) -> Result<Option<<Self::Eventuality as EventualityTrait>::Completion>, NetworkError> {
Ok(SignedRouterCommand::new(&eventuality.0, eventuality.1.clone(), &claim.signature))
}
#[cfg(test)]
async fn get_block_number(&self, id: &<Self::Block as Block<Self>>::Id) -> usize {
self
.provider
.get_block(B256::from(*id).into(), false)
.await
.unwrap()
.unwrap()
.header
.number
.unwrap()
.try_into()
.unwrap()
}
#[cfg(test)]
async fn check_eventuality_by_claim(
&self,
eventuality: &Self::Eventuality,
claim: &<Self::Eventuality as EventualityTrait>::Claim,
) -> bool {
SignedRouterCommand::new(&eventuality.0, eventuality.1.clone(), &claim.signature).is_some()
}
#[cfg(test)]
async fn get_transaction_by_eventuality(
&self,
block: usize,
eventuality: &Self::Eventuality,
) -> Self::Transaction {
match eventuality.1 {
RouterCommand::UpdateSeraiKey { nonce, .. } | RouterCommand::Execute { nonce, .. } => {
let router = self.router().await;
let router = router.as_ref().unwrap();
let block = u64::try_from(block).unwrap();
let filter = router
.key_updated_filter()
.from_block(block * 32)
.to_block(((block + 1) * 32) - 1)
.topic1(nonce);
let logs = self.provider.get_logs(&filter).await.unwrap();
if let Some(log) = logs.first() {
return self
.provider
.get_transaction_by_hash(log.clone().transaction_hash.unwrap())
.await
.unwrap();
};
let filter = router
.executed_filter()
.from_block(block * 32)
.to_block(((block + 1) * 32) - 1)
.topic1(nonce);
let logs = self.provider.get_logs(&filter).await.unwrap();
self.provider.get_transaction_by_hash(logs[0].transaction_hash.unwrap()).await.unwrap()
}
}
}
#[cfg(test)]
async fn mine_block(&self) {
self.provider.raw_request::<_, ()>("anvil_mine".into(), [32]).await.unwrap();
}
#[cfg(test)]
async fn test_send(&self, send_to: Self::Address) -> Self::Block {
use rand_core::OsRng;
use ciphersuite::group::ff::Field;
let key = <Secp256k1 as Ciphersuite>::F::random(&mut OsRng);
let address = ethereum_serai::crypto::address(&(Secp256k1::generator() * key));
// Set a 1.1 ETH balance
self
.provider
.raw_request::<_, ()>(
"anvil_setBalance".into(),
[Address(address).to_string(), "1100000000000000000".into()],
)
.await
.unwrap();
let tx = ethereum_serai::alloy_consensus::TxLegacy {
chain_id: None,
nonce: 0,
gas_price: 100_000_000_000u128,
gas_limit: 21_0000u128,
to: ethereum_serai::alloy_core::primitives::TxKind::Call(send_to.0.into()),
// 1 ETH
value: U256::from_str_radix("1000000000000000000", 10).unwrap(),
input: vec![].into(),
};
use ethereum_serai::alloy_consensus::SignableTransaction;
let sig = k256::ecdsa::SigningKey::from(k256::elliptic_curve::NonZeroScalar::new(key).unwrap())
.sign_prehash_recoverable(tx.signature_hash().as_ref())
.unwrap();
let mut bytes = vec![];
tx.encode_with_signature_fields(&sig.into(), &mut bytes);
let pending_tx = self.provider.send_raw_transaction(&bytes).await.ok().unwrap();
// Mine an epoch containing this TX
self.mine_block().await;
assert!(pending_tx.get_receipt().await.unwrap().status());
// Yield the freshly mined block
self.get_block(self.get_latest_block_number().await.unwrap()).await.unwrap()
}
}

View File

@@ -21,12 +21,17 @@ pub mod bitcoin;
#[cfg(feature = "bitcoin")]
pub use self::bitcoin::Bitcoin;
#[cfg(feature = "ethereum")]
pub mod ethereum;
#[cfg(feature = "ethereum")]
pub use ethereum::Ethereum;
#[cfg(feature = "monero")]
pub mod monero;
#[cfg(feature = "monero")]
pub use monero::Monero;
use crate::{Payment, Plan};
use crate::{Payment, Plan, multisigs::scheduler::Scheduler};
#[derive(Clone, Copy, Error, Debug)]
pub enum NetworkError {
@@ -105,7 +110,7 @@ pub trait Output<N: Network>: Send + Sync + Sized + Clone + PartialEq + Eq + Deb
fn kind(&self) -> OutputType;
fn id(&self) -> Self::Id;
fn tx_id(&self) -> <N::Transaction as Transaction<N>>::Id;
fn tx_id(&self) -> <N::Transaction as Transaction<N>>::Id; // TODO: Review use of
fn key(&self) -> <N::Curve as Ciphersuite>::G;
fn presumed_origin(&self) -> Option<N::Address>;
@@ -118,25 +123,33 @@ pub trait Output<N: Network>: Send + Sync + Sized + Clone + PartialEq + Eq + Deb
}
#[async_trait]
pub trait Transaction<N: Network>: Send + Sync + Sized + Clone + Debug {
pub trait Transaction<N: Network>: Send + Sync + Sized + Clone + PartialEq + Debug {
type Id: 'static + Id;
fn id(&self) -> Self::Id;
fn serialize(&self) -> Vec<u8>;
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self>;
// TODO: Move to Balance
#[cfg(test)]
async fn fee(&self, network: &N) -> u64;
}
pub trait SignableTransaction: Send + Sync + Clone + Debug {
// TODO: Move to Balance
fn fee(&self) -> u64;
}
pub trait Eventuality: Send + Sync + Clone + Debug {
pub trait Eventuality: Send + Sync + Clone + PartialEq + Debug {
type Claim: Send + Sync + Clone + PartialEq + Default + AsRef<[u8]> + AsMut<[u8]> + Debug;
type Completion: Send + Sync + Clone + PartialEq + Debug;
fn lookup(&self) -> Vec<u8>;
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self>;
fn serialize(&self) -> Vec<u8>;
fn claim(completion: &Self::Completion) -> Self::Claim;
// TODO: Make a dedicated Completion trait
fn serialize_completion(completion: &Self::Completion) -> Vec<u8>;
fn read_completion<R: io::Read>(reader: &mut R) -> io::Result<Self::Completion>;
}
#[derive(Clone, PartialEq, Eq, Debug)]
@@ -211,7 +224,7 @@ fn drop_branches<N: Network>(
) -> Vec<PostFeeBranch> {
let mut branch_outputs = vec![];
for payment in payments {
if payment.address == N::branch_address(key) {
if Some(&payment.address) == N::branch_address(key).as_ref() {
branch_outputs.push(PostFeeBranch { expected: payment.balance.amount.0, actual: None });
}
}
@@ -227,12 +240,12 @@ pub struct PreparedSend<N: Network> {
}
#[async_trait]
pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
pub trait Network: 'static + Send + Sync + Clone + PartialEq + Debug {
/// The elliptic curve used for this network.
type Curve: Curve;
/// The type representing the transaction for this network.
type Transaction: Transaction<Self>;
type Transaction: Transaction<Self>; // TODO: Review use of
/// The type representing the block for this network.
type Block: Block<Self>;
@@ -246,7 +259,12 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
/// This must be binding to both the outputs expected and the plan ID.
type Eventuality: Eventuality;
/// The FROST machine to sign a transaction.
type TransactionMachine: PreprocessMachine<Signature = Self::Transaction>;
type TransactionMachine: PreprocessMachine<
Signature = <Self::Eventuality as Eventuality>::Completion,
>;
/// The scheduler for this network.
type Scheduler: Scheduler<Self>;
/// The type representing an address.
// This should NOT be a String, yet a tailored type representing an efficient binary encoding,
@@ -269,10 +287,6 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
const ESTIMATED_BLOCK_TIME_IN_SECONDS: usize;
/// The amount of confirmations required to consider a block 'final'.
const CONFIRMATIONS: usize;
/// The maximum amount of inputs which will fit in a TX.
/// This should be equal to MAX_OUTPUTS unless one is specifically limited.
/// A TX with MAX_INPUTS and MAX_OUTPUTS must not exceed the max size.
const MAX_INPUTS: usize;
/// The maximum amount of outputs which will fit in a TX.
/// This should be equal to MAX_INPUTS unless one is specifically limited.
/// A TX with MAX_INPUTS and MAX_OUTPUTS must not exceed the max size.
@@ -293,13 +307,16 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
fn tweak_keys(key: &mut ThresholdKeys<Self::Curve>);
/// Address for the given group key to receive external coins to.
fn external_address(key: <Self::Curve as Ciphersuite>::G) -> Self::Address;
#[cfg(test)]
async fn external_address(&self, key: <Self::Curve as Ciphersuite>::G) -> Self::Address;
/// Address for the given group key to use for scheduled branches.
fn branch_address(key: <Self::Curve as Ciphersuite>::G) -> Self::Address;
fn branch_address(key: <Self::Curve as Ciphersuite>::G) -> Option<Self::Address>;
/// Address for the given group key to use for change.
fn change_address(key: <Self::Curve as Ciphersuite>::G) -> Self::Address;
fn change_address(key: <Self::Curve as Ciphersuite>::G) -> Option<Self::Address>;
/// Address for forwarded outputs from prior multisigs.
fn forward_address(key: <Self::Curve as Ciphersuite>::G) -> Self::Address;
///
/// forward_address must only return None if explicit forwarding isn't necessary.
fn forward_address(key: <Self::Curve as Ciphersuite>::G) -> Option<Self::Address>;
/// Get the latest block's number.
async fn get_latest_block_number(&self) -> Result<usize, NetworkError>;
@@ -349,13 +366,24 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
/// registered eventualities may have been completed in.
///
/// This may panic if not fed a block greater than the tracker's block number.
///
/// Plan ID -> (block number, TX ID, completion)
// TODO: get_eventuality_completions_internal + provided get_eventuality_completions for common
// code
// TODO: Consider having this return the Transaction + the Completion?
// Or Transaction with extract_completion?
async fn get_eventuality_completions(
&self,
eventualities: &mut EventualitiesTracker<Self::Eventuality>,
block: &Self::Block,
) -> HashMap<[u8; 32], (usize, Self::Transaction)>;
) -> HashMap<
[u8; 32],
(
usize,
<Self::Transaction as Transaction<Self>>::Id,
<Self::Eventuality as Eventuality>::Completion,
),
>;
/// Returns the needed fee to fulfill this Plan at this fee rate.
///
@@ -363,7 +391,6 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
async fn needed_fee(
&self,
block_number: usize,
plan_id: &[u8; 32],
inputs: &[Self::Output],
payments: &[Payment<Self>],
change: &Option<Self::Address>,
@@ -375,16 +402,25 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
/// 1) Call needed_fee
/// 2) If the Plan is fulfillable, amortize the fee
/// 3) Call signable_transaction *which MUST NOT return None if the above was done properly*
///
/// This takes a destructured Plan as some of these arguments are malleated from the original
/// Plan.
// TODO: Explicit AmortizedPlan?
#[allow(clippy::too_many_arguments)]
async fn signable_transaction(
&self,
block_number: usize,
plan_id: &[u8; 32],
key: <Self::Curve as Ciphersuite>::G,
inputs: &[Self::Output],
payments: &[Payment<Self>],
change: &Option<Self::Address>,
scheduler_addendum: &<Self::Scheduler as Scheduler<Self>>::Addendum,
) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError>;
/// Prepare a SignableTransaction for a transaction.
///
/// This must not persist anything as we will prepare Plans we never intend to execute.
async fn prepare_send(
&self,
block_number: usize,
@@ -395,13 +431,12 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
assert!((!plan.payments.is_empty()) || plan.change.is_some());
let plan_id = plan.id();
let Plan { key, inputs, mut payments, change } = plan;
let Plan { key, inputs, mut payments, change, scheduler_addendum } = plan;
let theoretical_change_amount =
inputs.iter().map(|input| input.balance().amount.0).sum::<u64>() -
payments.iter().map(|payment| payment.balance.amount.0).sum::<u64>();
let Some(tx_fee) = self.needed_fee(block_number, &plan_id, &inputs, &payments, &change).await?
else {
let Some(tx_fee) = self.needed_fee(block_number, &inputs, &payments, &change).await? else {
// This Plan is not fulfillable
// TODO: Have Plan explicitly distinguish payments and branches in two separate Vecs?
return Ok(PreparedSend {
@@ -466,7 +501,7 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
// Note the branch outputs' new values
let mut branch_outputs = vec![];
for (initial_amount, payment) in initial_payment_amounts.into_iter().zip(&payments) {
if payment.address == Self::branch_address(key) {
if Some(&payment.address) == Self::branch_address(key).as_ref() {
branch_outputs.push(PostFeeBranch {
expected: initial_amount,
actual: if payment.balance.amount.0 == 0 {
@@ -508,11 +543,20 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
)
})();
let Some(tx) =
self.signable_transaction(block_number, &plan_id, &inputs, &payments, &change).await?
let Some(tx) = self
.signable_transaction(
block_number,
&plan_id,
key,
&inputs,
&payments,
&change,
&scheduler_addendum,
)
.await?
else {
panic!(
"{}. {}: {}, {}: {:?}, {}: {:?}, {}: {:?}, {}: {}",
"{}. {}: {}, {}: {:?}, {}: {:?}, {}: {:?}, {}: {}, {}: {:?}",
"signable_transaction returned None for a TX we prior successfully calculated the fee for",
"id",
hex::encode(plan_id),
@@ -524,6 +568,8 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
change,
"successfully amoritized fee",
tx_fee,
"scheduler's addendum",
scheduler_addendum,
)
};
@@ -546,31 +592,49 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
}
/// Attempt to sign a SignableTransaction.
async fn attempt_send(
async fn attempt_sign(
&self,
keys: ThresholdKeys<Self::Curve>,
transaction: Self::SignableTransaction,
) -> Result<Self::TransactionMachine, NetworkError>;
/// Publish a transaction.
async fn publish_transaction(&self, tx: &Self::Transaction) -> Result<(), NetworkError>;
/// Get a transaction by its ID.
async fn get_transaction(
/// Publish a completion.
async fn publish_completion(
&self,
id: &<Self::Transaction as Transaction<Self>>::Id,
) -> Result<Self::Transaction, NetworkError>;
completion: &<Self::Eventuality as Eventuality>::Completion,
) -> Result<(), NetworkError>;
/// Confirm a plan was completed by the specified transaction.
// This is allowed to take shortcuts.
// This may assume an honest multisig, solely checking the inputs specified were spent.
// This may solely check the outputs are equivalent *so long as it's locked to the plan ID*.
fn confirm_completion(&self, eventuality: &Self::Eventuality, tx: &Self::Transaction) -> bool;
/// Confirm a plan was completed by the specified transaction, per our bounds.
///
/// Returns Err if there was an error with the confirmation methodology.
/// Returns Ok(None) if this is not a valid completion.
/// Returns Ok(Some(_)) with the completion if it's valid.
async fn confirm_completion(
&self,
eventuality: &Self::Eventuality,
claim: &<Self::Eventuality as Eventuality>::Claim,
) -> Result<Option<<Self::Eventuality as Eventuality>::Completion>, NetworkError>;
/// Get a block's number by its ID.
#[cfg(test)]
async fn get_block_number(&self, id: &<Self::Block as Block<Self>>::Id) -> usize;
/// Check an Eventuality is fulfilled by a claim.
#[cfg(test)]
async fn check_eventuality_by_claim(
&self,
eventuality: &Self::Eventuality,
claim: &<Self::Eventuality as Eventuality>::Claim,
) -> bool;
/// Get a transaction by the Eventuality it completes.
#[cfg(test)]
async fn get_transaction_by_eventuality(
&self,
block: usize,
eventuality: &Self::Eventuality,
) -> Self::Transaction;
#[cfg(test)]
async fn mine_block(&self);
@@ -579,3 +643,10 @@ pub trait Network: 'static + Send + Sync + Clone + PartialEq + Eq + Debug {
#[cfg(test)]
async fn test_send(&self, key: Self::Address) -> Self::Block;
}
pub trait UtxoNetwork: Network {
/// The maximum amount of inputs which will fit in a TX.
/// This should be equal to MAX_OUTPUTS unless one is specifically limited.
/// A TX with MAX_INPUTS and MAX_OUTPUTS must not exceed the max size.
const MAX_INPUTS: usize;
}

View File

@@ -39,8 +39,9 @@ use crate::{
networks::{
NetworkError, Block as BlockTrait, OutputType, Output as OutputTrait,
Transaction as TransactionTrait, SignableTransaction as SignableTransactionTrait,
Eventuality as EventualityTrait, EventualitiesTracker, Network,
Eventuality as EventualityTrait, EventualitiesTracker, Network, UtxoNetwork,
},
multisigs::scheduler::utxo::Scheduler,
};
#[derive(Clone, PartialEq, Eq, Debug)]
@@ -117,12 +118,6 @@ impl TransactionTrait<Monero> for Transaction {
fn id(&self) -> Self::Id {
self.hash()
}
fn serialize(&self) -> Vec<u8> {
self.serialize()
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
Transaction::read(reader)
}
#[cfg(test)]
async fn fee(&self, _: &Monero) -> u64 {
@@ -131,6 +126,9 @@ impl TransactionTrait<Monero> for Transaction {
}
impl EventualityTrait for Eventuality {
type Claim = [u8; 32];
type Completion = Transaction;
// Use the TX extra to look up potential matches
// While anyone can forge this, a transaction with distinct outputs won't actually match
// Extra includess the one time keys which are derived from the plan ID, so a collision here is a
@@ -145,6 +143,16 @@ impl EventualityTrait for Eventuality {
fn serialize(&self) -> Vec<u8> {
self.serialize()
}
fn claim(tx: &Transaction) -> [u8; 32] {
tx.id()
}
fn serialize_completion(completion: &Transaction) -> Vec<u8> {
completion.serialize()
}
fn read_completion<R: io::Read>(reader: &mut R) -> io::Result<Transaction> {
Transaction::read(reader)
}
}
#[derive(Clone, Debug)]
@@ -274,7 +282,8 @@ impl Monero {
async fn median_fee(&self, block: &Block) -> Result<Fee, NetworkError> {
let mut fees = vec![];
for tx_hash in &block.txs {
let tx = self.get_transaction(tx_hash).await?;
let tx =
self.rpc.get_transaction(*tx_hash).await.map_err(|_| NetworkError::ConnectionError)?;
// Only consider fees from RCT transactions, else the fee property read wouldn't be accurate
if tx.rct_signatures.rct_type() != RctType::Null {
continue;
@@ -454,6 +463,8 @@ impl Network for Monero {
type Eventuality = Eventuality;
type TransactionMachine = TransactionMachine;
type Scheduler = Scheduler<Monero>;
type Address = Address;
const NETWORK: NetworkId = NetworkId::Monero;
@@ -461,11 +472,6 @@ impl Network for Monero {
const ESTIMATED_BLOCK_TIME_IN_SECONDS: usize = 120;
const CONFIRMATIONS: usize = 10;
// wallet2 will not create a transaction larger than 100kb, and Monero won't relay a transaction
// larger than 150kb. This fits within the 100kb mark
// Technically, it can be ~124, yet a small bit of buffer is appreciated
// TODO: Test creating a TX this big
const MAX_INPUTS: usize = 120;
const MAX_OUTPUTS: usize = 16;
// 0.01 XMR
@@ -478,20 +484,21 @@ impl Network for Monero {
// Monero doesn't require/benefit from tweaking
fn tweak_keys(_: &mut ThresholdKeys<Self::Curve>) {}
fn external_address(key: EdwardsPoint) -> Address {
#[cfg(test)]
async fn external_address(&self, key: EdwardsPoint) -> Address {
Self::address_internal(key, EXTERNAL_SUBADDRESS)
}
fn branch_address(key: EdwardsPoint) -> Address {
Self::address_internal(key, BRANCH_SUBADDRESS)
fn branch_address(key: EdwardsPoint) -> Option<Address> {
Some(Self::address_internal(key, BRANCH_SUBADDRESS))
}
fn change_address(key: EdwardsPoint) -> Address {
Self::address_internal(key, CHANGE_SUBADDRESS)
fn change_address(key: EdwardsPoint) -> Option<Address> {
Some(Self::address_internal(key, CHANGE_SUBADDRESS))
}
fn forward_address(key: EdwardsPoint) -> Address {
Self::address_internal(key, FORWARD_SUBADDRESS)
fn forward_address(key: EdwardsPoint) -> Option<Address> {
Some(Self::address_internal(key, FORWARD_SUBADDRESS))
}
async fn get_latest_block_number(&self) -> Result<usize, NetworkError> {
@@ -558,7 +565,7 @@ impl Network for Monero {
&self,
eventualities: &mut EventualitiesTracker<Eventuality>,
block: &Block,
) -> HashMap<[u8; 32], (usize, Transaction)> {
) -> HashMap<[u8; 32], (usize, [u8; 32], Transaction)> {
let mut res = HashMap::new();
if eventualities.map.is_empty() {
return res;
@@ -568,13 +575,13 @@ impl Network for Monero {
network: &Monero,
eventualities: &mut EventualitiesTracker<Eventuality>,
block: &Block,
res: &mut HashMap<[u8; 32], (usize, Transaction)>,
res: &mut HashMap<[u8; 32], (usize, [u8; 32], Transaction)>,
) {
for hash in &block.txs {
let tx = {
let mut tx;
while {
tx = network.get_transaction(hash).await;
tx = network.rpc.get_transaction(*hash).await;
tx.is_err()
} {
log::error!("couldn't get transaction {}: {}", hex::encode(hash), tx.err().unwrap());
@@ -587,7 +594,7 @@ impl Network for Monero {
if eventuality.matches(&tx) {
res.insert(
eventualities.map.remove(&tx.prefix.extra).unwrap().0,
(usize::try_from(block.number().unwrap()).unwrap(), tx),
(usize::try_from(block.number().unwrap()).unwrap(), tx.id(), tx),
);
}
}
@@ -625,14 +632,13 @@ impl Network for Monero {
async fn needed_fee(
&self,
block_number: usize,
plan_id: &[u8; 32],
inputs: &[Output],
payments: &[Payment<Self>],
change: &Option<Address>,
) -> Result<Option<u64>, NetworkError> {
Ok(
self
.make_signable_transaction(block_number, plan_id, inputs, payments, change, true)
.make_signable_transaction(block_number, &[0; 32], inputs, payments, change, true)
.await?
.map(|(_, signable)| signable.fee()),
)
@@ -642,9 +648,11 @@ impl Network for Monero {
&self,
block_number: usize,
plan_id: &[u8; 32],
_key: EdwardsPoint,
inputs: &[Output],
payments: &[Payment<Self>],
change: &Option<Address>,
(): &(),
) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError> {
Ok(
self
@@ -658,7 +666,7 @@ impl Network for Monero {
)
}
async fn attempt_send(
async fn attempt_sign(
&self,
keys: ThresholdKeys<Self::Curve>,
transaction: SignableTransaction,
@@ -669,7 +677,7 @@ impl Network for Monero {
}
}
async fn publish_transaction(&self, tx: &Self::Transaction) -> Result<(), NetworkError> {
async fn publish_completion(&self, tx: &Transaction) -> Result<(), NetworkError> {
match self.rpc.publish_transaction(tx).await {
Ok(()) => Ok(()),
Err(RpcError::ConnectionError(e)) => {
@@ -682,12 +690,17 @@ impl Network for Monero {
}
}
async fn get_transaction(&self, id: &[u8; 32]) -> Result<Transaction, NetworkError> {
self.rpc.get_transaction(*id).await.map_err(map_rpc_err)
}
fn confirm_completion(&self, eventuality: &Eventuality, tx: &Transaction) -> bool {
eventuality.matches(tx)
async fn confirm_completion(
&self,
eventuality: &Eventuality,
id: &[u8; 32],
) -> Result<Option<Transaction>, NetworkError> {
let tx = self.rpc.get_transaction(*id).await.map_err(map_rpc_err)?;
if eventuality.matches(&tx) {
Ok(Some(tx))
} else {
Ok(None)
}
}
#[cfg(test)]
@@ -695,6 +708,31 @@ impl Network for Monero {
self.rpc.get_block(*id).await.unwrap().number().unwrap().try_into().unwrap()
}
#[cfg(test)]
async fn check_eventuality_by_claim(
&self,
eventuality: &Self::Eventuality,
claim: &[u8; 32],
) -> bool {
return eventuality.matches(&self.rpc.get_transaction(*claim).await.unwrap());
}
#[cfg(test)]
async fn get_transaction_by_eventuality(
&self,
block: usize,
eventuality: &Eventuality,
) -> Transaction {
let block = self.rpc.get_block_by_number(block).await.unwrap();
for tx in &block.txs {
let tx = self.rpc.get_transaction(*tx).await.unwrap();
if eventuality.matches(&tx) {
return tx;
}
}
panic!("block didn't have a transaction for this eventuality")
}
#[cfg(test)]
async fn mine_block(&self) {
// https://github.com/serai-dex/serai/issues/198
@@ -775,3 +813,11 @@ impl Network for Monero {
self.get_block(block).await.unwrap()
}
}
impl UtxoNetwork for Monero {
// wallet2 will not create a transaction larger than 100kb, and Monero won't relay a transaction
// larger than 150kb. This fits within the 100kb mark
// Technically, it can be ~124, yet a small bit of buffer is appreciated
// TODO: Test creating a TX this big
const MAX_INPUTS: usize = 120;
}