Simplify and test deterministically_sign

This commit is contained in:
Luke Parker
2025-01-18 15:13:39 -05:00
parent 8222ce78d8
commit 0d906363a0
6 changed files with 66 additions and 31 deletions

View File

@@ -15,34 +15,66 @@ pub fn keccak256(data: impl AsRef<[u8]>) -> [u8; 32] {
/// Deterministically sign a transaction.
///
/// This signs a transaction via setting `r = 1, s = 1`, and incrementing `r` until a signer is
/// recoverable from the signature for this transaction. The purpose of this is to be able to send
/// a transaction from a known account which no one knows the private key for.
/// This signs a transaction via setting a signature of `r = 1, s = 1`. The purpose of this is to
/// be able to send a transaction from an account which no one knows the private key for and no
/// other messages may be signed for from.
///
/// This function panics if passed a transaction with a non-None chain ID. This is because the
/// signer for this transaction is only singular across any/all EVM instances if it isn't binding
/// to an instance.
pub fn deterministically_sign(tx: &TxLegacy) -> Signed<TxLegacy> {
pub fn deterministically_sign(tx: TxLegacy) -> Signed<TxLegacy> {
assert!(
tx.chain_id.is_none(),
"chain ID was Some when deterministically signing a TX (causing a non-singular signer)"
);
let mut r = Scalar::ONE;
/*
ECDSA signatures are:
- x = private key
- k = rand()
- R = k * G
- r = R.x()
- s = (H(m) + (r * x)) * k.invert()
Key recovery is performed via:
- a = s * R = (H(m) + (r * x)) * G
- b = a - (H(m) * G) = (r * x) * G
- X = b / r = x * G
- X = ((s * R) - (H(m) * G)) * r.invert()
This requires `r` be non-zero and `R` be recoverable from `r` and the parity byte. For
`r = 1, s = 1`, this sets `X` to `R - (H(m) * G)`. Since there is an `R` recoverable for
`r = 1`, since the `R` is a point with an unknown discrete logarithm w.r.t. the generator, and
since the resulting key is dependent on the message signed for, this will always work to
the specification.
*/
let r = Scalar::ONE;
let s = Scalar::ONE;
loop {
// Create the signature
let r_bytes: [u8; 32] = r.to_repr().into();
let s_bytes: [u8; 32] = s.to_repr().into();
let signature =
PrimitiveSignature::from_scalars_and_parity(r_bytes.into(), s_bytes.into(), false);
let r_bytes: [u8; 32] = r.to_repr().into();
let s_bytes: [u8; 32] = s.to_repr().into();
let signature =
PrimitiveSignature::from_scalars_and_parity(r_bytes.into(), s_bytes.into(), false);
// Check if this is a valid signature
let tx = tx.clone().into_signed(signature);
if tx.recover_signer().is_ok() {
return tx;
}
r += Scalar::ONE;
}
let res = tx.into_signed(signature);
debug_assert!(res.recover_signer().is_ok());
res
}
#[test]
fn test_deterministically_sign() {
let tx = TxLegacy { chain_id: None, ..Default::default() };
let signed = deterministically_sign(tx.clone());
assert!(signed.recover_signer().is_ok());
let one = alloy_core::primitives::U256::from(1u64);
assert_eq!(signed.signature().r(), one);
assert_eq!(signed.signature().s(), one);
let mut other_tx = tx.clone();
other_tx.nonce += 1;
// Signing a distinct message should yield a distinct signer
assert!(
signed.recover_signer().unwrap() != deterministically_sign(other_tx).recover_signer().unwrap()
);
}