Files
serai/processor/ethereum/src/primitives/transaction.rs

327 lines
9.6 KiB
Rust
Raw Normal View History

use std::{io, collections::HashMap};
use rand_core::{RngCore, CryptoRng};
use ciphersuite::{Ciphersuite, Secp256k1};
use frost::{
dkg::{Participant, ThresholdKeys},
FrostError,
algorithm::*,
sign::*,
};
use alloy_core::primitives::U256;
use serai_client::networks::ethereum::Address;
use scheduler::SignableTransaction;
use ethereum_primitives::keccak256;
use ethereum_schnorr::{PublicKey, Signature};
use ethereum_router::{Coin, OutInstructions, Executed, Router};
use crate::output::OutputId;
#[derive(Clone, PartialEq, Debug)]
pub(crate) enum Action {
SetKey { chain_id: U256, nonce: u64, key: PublicKey },
Batch { chain_id: U256, nonce: u64, outs: Vec<(Address, (Coin, U256))> },
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) struct Eventuality(pub(crate) Executed);
impl Action {
fn nonce(&self) -> u64 {
match self {
Action::SetKey { nonce, .. } | Action::Batch { nonce, .. } => *nonce,
}
}
fn message(&self) -> Vec<u8> {
match self {
Action::SetKey { chain_id, nonce, key } => {
Router::update_serai_key_message(*chain_id, *nonce, key)
}
Action::Batch { chain_id, nonce, outs } => {
Router::execute_message(*chain_id, *nonce, OutInstructions::from(outs.as_ref()))
}
}
}
pub(crate) fn eventuality(&self) -> Eventuality {
Eventuality(match self {
Self::SetKey { chain_id: _, nonce, key } => {
Executed::SetKey { nonce: *nonce, key: key.eth_repr() }
}
Self::Batch { chain_id, nonce, outs } => Executed::Batch {
nonce: *nonce,
message_hash: keccak256(Router::execute_message(
*chain_id,
*nonce,
OutInstructions::from(outs.as_ref()),
)),
},
})
}
}
#[derive(Clone, PartialEq, Debug)]
pub(crate) struct Transaction(Action, Signature);
impl scheduler::Transaction for Transaction {
fn read(reader: &mut impl io::Read) -> io::Result<Self> {
/*
let buf: Vec<u8> = borsh::from_reader(reader)?;
// We can only read this from a &[u8], hence prior reading into a Vec<u8>
<TxLegacy as alloy_rlp::Decodable>::decode(&mut buf.as_slice())
.map(Self)
.map_err(io::Error::other)
*/
let action = Action::read(reader)?;
let signature = Signature::read(reader)?;
Ok(Transaction(action, signature))
}
fn write(&self, writer: &mut impl io::Write) -> io::Result<()> {
/*
let mut buf = Vec::with_capacity(256);
<TxLegacy as alloy_rlp::Encodable>::encode(&self.0, &mut buf);
borsh::BorshSerialize::serialize(&buf, writer)
*/
self.0.write(writer)?;
self.1.write(writer)?;
Ok(())
}
}
/// The HRAm to use for the Schnorr Solidity library.
///
/// This will panic if the public key being signed for is not representable within the Schnorr
/// Solidity library.
#[derive(Clone, Default, Debug)]
pub struct EthereumHram;
impl Hram<Secp256k1> for EthereumHram {
#[allow(non_snake_case)]
fn hram(
R: &<Secp256k1 as Ciphersuite>::G,
A: &<Secp256k1 as Ciphersuite>::G,
m: &[u8],
) -> <Secp256k1 as Ciphersuite>::F {
Signature::challenge(*R, &PublicKey::new(*A).unwrap(), m)
}
}
#[derive(Clone)]
pub(crate) struct ClonableTransctionMachine(ThresholdKeys<Secp256k1>, Action);
type LiteralAlgorithmMachine = AlgorithmMachine<Secp256k1, IetfSchnorr<Secp256k1, EthereumHram>>;
type LiteralAlgorithmSignMachine =
AlgorithmSignMachine<Secp256k1, IetfSchnorr<Secp256k1, EthereumHram>>;
pub(crate) struct ActionSignMachine(PublicKey, Action, LiteralAlgorithmSignMachine);
type LiteralAlgorithmSignatureMachine =
AlgorithmSignatureMachine<Secp256k1, IetfSchnorr<Secp256k1, EthereumHram>>;
pub(crate) struct ActionSignatureMachine(PublicKey, Action, LiteralAlgorithmSignatureMachine);
impl PreprocessMachine for ClonableTransctionMachine {
type Preprocess = <LiteralAlgorithmMachine as PreprocessMachine>::Preprocess;
type Signature = Transaction;
type SignMachine = ActionSignMachine;
fn preprocess<R: RngCore + CryptoRng>(
self,
rng: &mut R,
) -> (Self::SignMachine, Self::Preprocess) {
let (machine, preprocess) =
AlgorithmMachine::new(IetfSchnorr::<Secp256k1, EthereumHram>::ietf(), self.0.clone())
.preprocess(rng);
(
ActionSignMachine(
PublicKey::new(self.0.group_key()).expect("signing with non-representable key"),
self.1,
machine,
),
preprocess,
)
}
}
impl SignMachine<Transaction> for ActionSignMachine {
type Params = <LiteralAlgorithmSignMachine as SignMachine<
<LiteralAlgorithmMachine as PreprocessMachine>::Signature,
>>::Params;
type Keys = <LiteralAlgorithmSignMachine as SignMachine<
<LiteralAlgorithmMachine as PreprocessMachine>::Signature,
>>::Keys;
type Preprocess = <LiteralAlgorithmSignMachine as SignMachine<
<LiteralAlgorithmMachine as PreprocessMachine>::Signature,
>>::Preprocess;
type SignatureShare = <LiteralAlgorithmSignMachine as SignMachine<
<LiteralAlgorithmMachine as PreprocessMachine>::Signature,
>>::SignatureShare;
type SignatureMachine = ActionSignatureMachine;
fn cache(self) -> CachedPreprocess {
unimplemented!()
}
fn from_cache(
params: Self::Params,
keys: Self::Keys,
cache: CachedPreprocess,
) -> (Self, Self::Preprocess) {
unimplemented!()
}
fn read_preprocess<R: io::Read>(&self, reader: &mut R) -> io::Result<Self::Preprocess> {
self.2.read_preprocess(reader)
}
fn sign(
self,
commitments: HashMap<Participant, Self::Preprocess>,
msg: &[u8],
) -> Result<(Self::SignatureMachine, Self::SignatureShare), FrostError> {
assert!(msg.is_empty());
self
.2
.sign(commitments, &self.1.message())
.map(|(machine, shares)| (ActionSignatureMachine(self.0, self.1, machine), shares))
}
}
impl SignatureMachine<Transaction> for ActionSignatureMachine {
type SignatureShare = <LiteralAlgorithmSignatureMachine as SignatureMachine<
<LiteralAlgorithmMachine as PreprocessMachine>::Signature,
>>::SignatureShare;
fn read_share<R: io::Read>(&self, reader: &mut R) -> io::Result<Self::SignatureShare> {
self.2.read_share(reader)
}
fn complete(
self,
shares: HashMap<Participant, Self::SignatureShare>,
) -> Result<Transaction, FrostError> {
/*
match self.1 {
Action::SetKey { chain_id: _, nonce: _, key } => self.0.update_serai_key(key, signature),
Action::Batch { chain_id: _, nonce: _, outs } => self.0.execute(outs, signature),
}
*/
self.2.complete(shares).map(|signature| {
let s = signature.s;
let c = Signature::challenge(signature.R, &self.0, &self.1.message());
Transaction(self.1, Signature::new(c, s))
})
}
}
impl SignableTransaction for Action {
type Transaction = Transaction;
type Ciphersuite = Secp256k1;
type PreprocessMachine = ClonableTransctionMachine;
fn read(reader: &mut impl io::Read) -> io::Result<Self> {
let mut kind = [0xff];
reader.read_exact(&mut kind)?;
if kind[0] >= 2 {
Err(io::Error::other("unrecognized Action type"))?;
}
let mut chain_id = [0; 32];
reader.read_exact(&mut chain_id)?;
let chain_id = U256::from_le_bytes(chain_id);
let mut nonce = [0; 8];
reader.read_exact(&mut nonce)?;
let nonce = u64::from_le_bytes(nonce);
Ok(match kind[0] {
0 => {
let mut key = [0; 32];
reader.read_exact(&mut key)?;
let key =
PublicKey::from_eth_repr(key).ok_or_else(|| io::Error::other("invalid key in Action"))?;
Action::SetKey { chain_id, nonce, key }
}
1 => {
let mut outs_len = [0; 4];
reader.read_exact(&mut outs_len)?;
let outs_len = usize::try_from(u32::from_le_bytes(outs_len)).unwrap();
let mut outs = vec![];
for _ in 0 .. outs_len {
let address = borsh::from_reader(reader)?;
let coin = Coin::read(reader)?;
let mut amount = [0; 32];
reader.read_exact(&mut amount)?;
let amount = U256::from_le_bytes(amount);
outs.push((address, (coin, amount)));
}
Action::Batch { chain_id, nonce, outs }
}
_ => unreachable!(),
})
}
fn write(&self, writer: &mut impl io::Write) -> io::Result<()> {
match self {
Self::SetKey { chain_id, nonce, key } => {
writer.write_all(&[0])?;
writer.write_all(&chain_id.as_le_bytes())?;
writer.write_all(&nonce.to_le_bytes())?;
writer.write_all(&key.eth_repr())
}
Self::Batch { chain_id, nonce, outs } => {
writer.write_all(&[1])?;
writer.write_all(&chain_id.as_le_bytes())?;
writer.write_all(&nonce.to_le_bytes())?;
writer.write_all(&u32::try_from(outs.len()).unwrap().to_le_bytes())?;
for (address, (coin, amount)) in outs {
borsh::BorshSerialize::serialize(address, writer)?;
coin.write(writer)?;
writer.write_all(&amount.as_le_bytes())?;
}
Ok(())
}
}
}
fn id(&self) -> [u8; 32] {
let mut res = [0; 32];
res[.. 8].copy_from_slice(&self.nonce().to_le_bytes());
res
}
fn sign(self, keys: ThresholdKeys<Self::Ciphersuite>) -> Self::PreprocessMachine {
ClonableTransctionMachine(keys, self)
}
}
impl primitives::Eventuality for Eventuality {
type OutputId = OutputId;
fn id(&self) -> [u8; 32] {
let mut res = [0; 32];
res[.. 8].copy_from_slice(&self.0.nonce().to_le_bytes());
res
}
fn lookup(&self) -> Vec<u8> {
self.0.nonce().to_le_bytes().to_vec()
}
fn singular_spent_output(&self) -> Option<Self::OutputId> {
None
}
fn read(reader: &mut impl io::Read) -> io::Result<Self> {
Executed::read(reader).map(Self)
}
fn write(&self, writer: &mut impl io::Write) -> io::Result<()> {
self.0.write(writer)
}
}