Files
serai/crypto/evrf/src/lib.rs

569 lines
20 KiB
Rust
Raw Normal View History

use subtle::*;
use zeroize::{Zeroize, Zeroizing};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
use blake2::{Digest, Blake2s256};
use ciphersuite::{
group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group, GroupEncoding,
},
Ciphersuite,
};
use generalized_bulletproofs::{
*,
transcript::{Transcript as ProverTranscript, VerifierTranscript},
arithmetic_circuit_proof::*,
};
use generalized_bulletproofs_circuit_abstraction::*;
use ec_divisors::{DivisorCurve, new_divisor};
use generalized_bulletproofs_ec_gadgets::*;
#[cfg(test)]
mod tests;
/// A curve to perform the eVRF with.
pub trait EvrfCurve: Ciphersuite {
type EmbeddedCurve: Ciphersuite;
type EmbeddedCurveParameters: DiscreteLogParameters;
}
/// The result of proving for an eVRF.
pub struct EvrfProveResult<C: Ciphersuite> {
pub scalars: Vec<Zeroizing<C::F>>,
pub proof: Vec<u8>,
}
/// A struct to prove/verify eVRFs with.
pub struct Evrf;
impl Evrf {
fn transcript_to_points<C: Ciphersuite>(seed: [u8; 32], quantity: usize) -> Vec<C::G> {
// We need to do two Diffie-Hellman's per point in order to achieve an unbiased result
let quantity = 2 * quantity;
let mut rng = ChaCha20Rng::from_seed(seed);
let mut res = Vec::with_capacity(quantity);
while res.len() < quantity {
let mut repr = <C::G as GroupEncoding>::Repr::default();
rng.fill_bytes(repr.as_mut());
if let Ok(point) = C::read_G(&mut repr.as_ref()) {
res.push(point);
}
}
res
}
fn point_with_dlogs<Parameters: DiscreteLogParameters>(
quantity: usize,
generators_to_use: usize,
) -> Vec<PointWithDlog<Parameters>> {
let quantity = 2 * quantity;
fn read_one_from_tape(generators_to_use: usize, start: &mut usize) -> Variable {
let commitment = *start / (2 * generators_to_use);
let index = *start % generators_to_use;
let res = if (*start / generators_to_use) % 2 == 0 {
Variable::CG { commitment, index }
} else {
Variable::CH { commitment, index }
};
*start += 1;
res
}
fn read_from_tape<N: ArrayLength>(
generators_to_use: usize,
start: &mut usize,
) -> GenericArray<Variable, N> {
let mut buf = Vec::with_capacity(N::USIZE);
for _ in 0 .. N::USIZE {
buf.push(read_one_from_tape(generators_to_use, start));
}
GenericArray::from_slice(&buf).clone()
}
// We define a serialized tape of the discrete logarithm, then for each divisor/point:
// zero, x**i, y x**i, y, x_coord, y_coord
// We then chunk that into vector commitments
// Here, we take the assumed layout and generate the expected `Variable`s for this layout
let mut start = 0;
let dlog = read_from_tape(generators_to_use, &mut start);
let mut res = Vec::with_capacity(quantity + 1);
let mut read_point_with_dlog = || {
let zero = read_one_from_tape(generators_to_use, &mut start);
let x_from_power_of_2 = read_from_tape(generators_to_use, &mut start);
let yx = read_from_tape(generators_to_use, &mut start);
let y = read_one_from_tape(generators_to_use, &mut start);
let divisor = Divisor { zero, x_from_power_of_2, yx, y };
let point = (
read_one_from_tape(generators_to_use, &mut start),
read_one_from_tape(generators_to_use, &mut start),
);
res.push(PointWithDlog { dlog: dlog.clone(), divisor, point });
};
for _ in 0 .. quantity {
// One for each DH proven
read_point_with_dlog();
}
// And one more for the proof this is the discrete log of the public key
read_point_with_dlog();
res
}
fn muls_and_generators_to_use(quantity: usize) -> (usize, usize) {
let expected_muls = 7 * (1 + (2 * quantity));
let generators_to_use = {
let mut padded_pow_of_2 = 1;
while padded_pow_of_2 < expected_muls {
padded_pow_of_2 <<= 1;
}
// This may as small as 16, which would create an excessive amount of vector commitments
// We set a floor of 1024 rows for bandwidth reasons
padded_pow_of_2.max(1024)
};
(expected_muls, generators_to_use)
}
fn circuit<C: EvrfCurve>(
curve_spec: &CurveSpec<C::F>,
evrf_public_key: (C::F, C::F),
quantity: usize,
generator_tables: &[GeneratorTable<C::F, C::EmbeddedCurveParameters>],
circuit: &mut Circuit<C>,
transcript: &mut impl Transcript,
) {
let (expected_muls, generators_to_use) = Self::muls_and_generators_to_use(quantity);
let (challenge, challenged_generators) =
circuit.discrete_log_challenge(transcript, curve_spec, generator_tables);
let mut point_with_dlogs =
Self::point_with_dlogs::<C::EmbeddedCurveParameters>(quantity, generators_to_use).into_iter();
// Verify the DLog claims for the sampled points
for (i, pair) in challenged_generators.chunks(2).take(quantity).enumerate() {
let mut lincomb = LinComb::empty();
debug_assert_eq!(pair.len(), 2);
for challenged_generator in pair {
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_generator,
);
// For each point in this pair, add its x coordinate to a lincomb
lincomb = lincomb.term(C::F::ONE, point.x());
}
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
// commitment
circuit.equality(lincomb, &LinComb::from(Variable::V(i)));
}
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_generators.last().unwrap(),
);
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(evrf_public_key.0));
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(evrf_public_key.1));
debug_assert_eq!(expected_muls, circuit.muls());
debug_assert!(point_with_dlogs.next().is_none());
}
/// Prove a point on an elliptic curve had its discrete logarithm generated via an eVRF.
pub fn prove<C: EvrfCurve>(
rng: &mut (impl RngCore + CryptoRng),
generators: &Generators<C>,
evrf_private_key: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F,
invocation: [u8; 32],
quantity: usize,
) -> Result<EvrfProveResult<C>, AcError>
where
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G:
DivisorCurve<FieldElement = <C as Ciphersuite>::F>,
{
let curve_spec = CurveSpec {
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
};
// Combine the invocation and the public key into a transcript
let transcript = Blake2s256::digest(
[
invocation.as_slice(),
(<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key)
.to_bytes()
.as_ref(),
]
.concat(),
)
.into();
let points = Self::transcript_to_points::<C::EmbeddedCurve>(transcript, quantity);
let num_bits: u32 = <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F::NUM_BITS;
// Obtain the bits of the private key
let mut sum_of_coefficients: u32 = 0;
let mut dlog = vec![<C as Ciphersuite>::F::ZERO; num_bits as usize];
for (i, bit) in evrf_private_key.to_le_bits().into_iter().take(num_bits as usize).enumerate() {
let bit = Choice::from(u8::from(bit));
dlog[i] =
<_>::conditional_select(&<C as Ciphersuite>::F::ZERO, &<C as Ciphersuite>::F::ONE, bit);
sum_of_coefficients += u32::conditional_select(&0, &1, bit);
}
/*
Now that we have the discrete logarithm as the coefficients 0/1 for a polynomial of 2**i, we
want to malleate it such that the sum of its coefficients is NUM_BITS. The divisor
calculcation is a non-trivial amount of work and would be extremely vulnerable to timing
attacks without such efforts.
We find the highest non-0 coefficient, decrement it, and increase the prior coefficient by 2.
This increase the sum of the coefficients by 1.
*/
let two = <C as Ciphersuite>::F::ONE.double();
for _ in 0 .. num_bits {
// Find the highest coefficient currently non-zero
let mut h = 1u32;
// The value of this highest coefficient, and the coefficient prior to it
let mut h_value = dlog[h as usize];
let mut h_prior_value = dlog[(h as usize) - 1];
// TODO: Squash the following two loops by iterating from the top bit to the bottom bit
let mut prior_scalar = dlog[(h as usize) - 1];
for (i, scalar) in dlog.iter().enumerate().skip(h as usize) {
let is_zero = <C as Ciphersuite>::F::ZERO.ct_eq(scalar);
// Set `h_*` if this value is non-0
h = u32::conditional_select(&h, &(i as u32), !is_zero);
h_value = <C as Ciphersuite>::F::conditional_select(&h_value, scalar, !is_zero);
h_prior_value =
<C as Ciphersuite>::F::conditional_select(&h_prior_value, &prior_scalar, !is_zero);
// Update prior_scalar
prior_scalar = *scalar;
}
// We should not have selected a value equivalent to 0
// TODO: Ban evrf keys < NUM_BITS and accordingly unable to be so coerced
// TODO: Preprocess this decomposition of the eVRF key?
assert!(!bool::from(h_value.ct_eq(&<C as Ciphersuite>::F::ZERO)));
// Update h_value, h_prior_value as necessary
h_value -= <C as Ciphersuite>::F::ONE;
h_prior_value += two;
// Now, set these values if we should
let should_set = !sum_of_coefficients.ct_eq(&num_bits);
sum_of_coefficients += u32::conditional_select(&0, &1, should_set);
for (i, scalar) in dlog.iter_mut().enumerate() {
let this_is_prior = (i as u32).ct_eq(&(h - 1));
let this_is_high = (i as u32).ct_eq(&h);
*scalar = <_>::conditional_select(scalar, &h_prior_value, should_set & this_is_prior);
*scalar = <_>::conditional_select(scalar, &h_value, should_set & this_is_high);
}
}
debug_assert!(bool::from(
dlog
.iter()
.sum::<<C as Ciphersuite>::F>()
.ct_eq(&<C as Ciphersuite>::F::from(u64::from(num_bits)))
));
// A tape of the discrete logarithm, then [zero, x**i, y x**i, y, x_coord, y_coord]
let mut vector_commitment_tape = vec![];
// Start by pushing the discrete logarithm onto the tape
for coefficient in &dlog {
vector_commitment_tape.push(*coefficient);
}
let mut generator_tables = Vec::with_capacity(1 + (2 * quantity));
// A function to calculate a divisor and push it onto the tape
// This defines a vec, divisor_points, outside of the fn to reuse its allocation
let mut divisor_points = Vec::with_capacity((num_bits as usize) + 1);
let mut divisor = |mut generator: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G| {
{
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let dh = generator * evrf_private_key;
{
for coefficient in &dlog {
let mut coefficient = *coefficient;
while coefficient != <C as Ciphersuite>::F::ZERO {
coefficient -= <C as Ciphersuite>::F::ONE;
divisor_points.push(generator);
}
generator = generator.double();
}
}
divisor_points.push(-dh);
let mut divisor = new_divisor(&divisor_points).unwrap().normalize_x_coefficient();
divisor_points.zeroize();
vector_commitment_tape.push(divisor.zero_coefficient);
for coefficient in divisor.x_coefficients.iter().skip(1) {
vector_commitment_tape.push(*coefficient);
}
for _ in divisor.x_coefficients.len() ..
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE
{
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
}
for coefficient in divisor.yx_coefficients.first().unwrap_or(&vec![]) {
vector_commitment_tape.push(*coefficient);
}
for _ in divisor.yx_coefficients.first().unwrap_or(&vec![]).len() ..
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE
{
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
}
vector_commitment_tape
.push(divisor.y_coefficients.first().cloned().unwrap_or(<C as Ciphersuite>::F::ZERO));
divisor.zeroize();
drop(divisor);
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(dh).unwrap();
vector_commitment_tape.push(x);
vector_commitment_tape.push(y);
(x, y)
};
// Push a divisor for each point we use in the eVRF
let mut scalars = Vec::with_capacity(quantity);
for pair in points.chunks(2) {
let mut res = Zeroizing::new(C::F::ZERO);
for point in pair {
let (dh_x, _) = divisor(*point);
*res += dh_x;
}
scalars.push(res);
}
debug_assert_eq!(scalars.len(), quantity);
// Also push a divisor for proving that we're using the correct scalar
let evrf_public_key = divisor(<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator());
dlog.zeroize();
drop(dlog);
// Now that we have the vector commitment tape, chunk it
let (_, generators_to_use) = Self::muls_and_generators_to_use(quantity);
let mut vector_commitments =
Vec::with_capacity(vector_commitment_tape.len().div_ceil(generators_to_use));
for chunk in vector_commitment_tape.chunks(generators_to_use * 2) {
let g_values = chunk[.. generators_to_use].to_vec().into();
let h_values = chunk[generators_to_use ..].to_vec().into();
vector_commitments.push(PedersenVectorCommitment {
g_values,
h_values,
mask: C::F::random(&mut *rng),
});
}
vector_commitment_tape.zeroize();
drop(vector_commitment_tape);
let mut commitments = Vec::with_capacity(quantity);
for scalar in &scalars {
commitments.push(PedersenCommitment { value: **scalar, mask: C::F::random(&mut *rng) });
}
let mut transcript = ProverTranscript::new(transcript);
let commited_commitments = transcript.write_commitments(
vector_commitments
.iter()
.map(|commitment| {
commitment
.commit(generators.g_bold_slice(), generators.h_bold_slice(), generators.h())
.ok_or(AcError::NotEnoughGenerators)
})
.collect::<Result<_, _>>()?,
commitments
.iter()
.map(|commitment| commitment.commit(generators.g(), generators.h()))
.collect(),
);
let mut circuit = Circuit::prove(vector_commitments, commitments.clone());
Self::circuit::<C>(
&curve_spec,
evrf_public_key,
quantity,
&generator_tables,
&mut circuit,
&mut transcript,
);
let (statement, Some(witness)) = circuit
.statement(
generators.reduce(generators_to_use).ok_or(AcError::NotEnoughGenerators)?,
commited_commitments,
)
.unwrap()
else {
panic!("proving yet wasn't yielded the witness");
};
statement.prove(&mut *rng, &mut transcript, witness).unwrap();
// Push the reveal onto the transcript
for scalar in &scalars {
transcript.push_point(generators.g() * **scalar);
}
// Define a weight to aggregate the commitments with
let mut agg_weights = Vec::with_capacity(quantity);
agg_weights.push(C::F::ONE);
while agg_weights.len() < quantity {
agg_weights.push(transcript.challenge::<C::F>());
}
let mut x = commitments
.iter()
.zip(&agg_weights)
.map(|(commitment, weight)| commitment.mask * *weight)
.sum::<C::F>();
// Do a Schnorr PoK for the randomness of the aggregated Pedersen commitment
let mut r = C::F::random(&mut *rng);
transcript.push_point(generators.h() * r);
let c = transcript.challenge::<C::F>();
transcript.push_scalar(r + (c * x));
r.zeroize();
x.zeroize();
Ok(EvrfProveResult { scalars, proof: transcript.complete() })
}
// TODO: Dedicated error
/// Verify an eVRF proof, returning the commitments output.
pub fn verify<C: EvrfCurve>(
rng: &mut (impl RngCore + CryptoRng),
generators: &Generators<C>,
verifier: &mut BatchVerifier<C>,
evrf_public_key: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
invocation: [u8; 32],
quantity: usize,
proof: &[u8],
) -> Result<Vec<C::G>, ()>
where
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G:
DivisorCurve<FieldElement = <C as Ciphersuite>::F>,
{
let curve_spec = CurveSpec {
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
};
let transcript =
Blake2s256::digest([invocation.as_slice(), evrf_public_key.to_bytes().as_ref()].concat())
.into();
let points = Self::transcript_to_points::<C::EmbeddedCurve>(transcript, quantity);
let mut generator_tables = Vec::with_capacity(1 + (2 * quantity));
for generator in points {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
{
let (x, y) =
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(<C::EmbeddedCurve as Ciphersuite>::generator())
.unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let (_, generators_to_use) = Self::muls_and_generators_to_use(quantity);
let mut transcript = VerifierTranscript::new(transcript, proof);
let divisor_len = 1 +
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE +
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE +
1;
let dlog_proof_len = divisor_len + 2;
let vcs = (<C::EmbeddedCurveParameters as DiscreteLogParameters>::ScalarBits::USIZE +
((1 + (2 * quantity)) * dlog_proof_len))
.div_ceil(2 * generators_to_use);
let all_commitments = transcript.read_commitments(vcs, quantity).map_err(|_| ())?;
let commitments = all_commitments.V().to_vec();
let mut circuit = Circuit::verify();
Self::circuit::<C>(
&curve_spec,
// TODO: Use a better error here
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(evrf_public_key).ok_or(())?,
quantity,
&generator_tables,
&mut circuit,
&mut transcript,
);
let (statement, None) =
circuit.statement(generators.reduce(generators_to_use).ok_or(())?, all_commitments).unwrap()
else {
panic!("verifying yet was yielded a witness");
};
statement.verify(rng, verifier, &mut transcript).map_err(|_| ())?;
// Read the unblinded public keys
let mut res = Vec::with_capacity(quantity);
for _ in 0 .. quantity {
res.push(transcript.read_point::<C>().map_err(|_| ())?);
}
let mut agg_weights = Vec::with_capacity(quantity);
agg_weights.push(C::F::ONE);
while agg_weights.len() < quantity {
agg_weights.push(transcript.challenge::<C::F>());
}
let sum_points =
res.iter().zip(&agg_weights).map(|(point, weight)| *point * *weight).sum::<C::G>();
let sum_commitments =
commitments.into_iter().zip(agg_weights).map(|(point, weight)| point * weight).sum::<C::G>();
#[allow(non_snake_case)]
let A = sum_commitments - sum_points;
#[allow(non_snake_case)]
let R = transcript.read_point::<C>().map_err(|_| ())?;
let c = transcript.challenge::<C::F>();
let s = transcript.read_scalar::<C>().map_err(|_| ())?;
// Doesn't batch verify this as we can't access the internals of the GBP batch verifier
if (R + (A * c)) != (generators.h() * s) {
Err(())?;
}
if !transcript.complete().is_empty() {
Err(())?
};
Ok(res)
}
}