Files
serai/crypto/frost/src/sign.rs

444 lines
15 KiB
Rust
Raw Normal View History

use core::fmt;
2022-07-15 01:26:07 -04:00
use std::{
io::{Read, Cursor},
sync::Arc,
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use transcript::Transcript;
2022-07-15 01:26:07 -04:00
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use multiexp::multiexp_vartime;
use dleq::DLEqProof;
use crate::{
2022-07-15 01:26:07 -04:00
curve::Curve, FrostError, FrostParams, FrostKeys, FrostView, algorithm::Algorithm, validate_map,
};
/// Pairing of an Algorithm with a FrostKeys instance and this specific signing set
#[derive(Clone)]
pub struct Params<C: Curve, A: Algorithm<C>> {
algorithm: A,
keys: Arc<FrostKeys<C>>,
view: FrostView<C>,
}
// Currently public to enable more complex operations as desired, yet solely used in testing
impl<C: Curve, A: Algorithm<C>> Params<C, A> {
pub fn new(
algorithm: A,
keys: Arc<FrostKeys<C>>,
included: &[u16],
2022-04-29 15:28:04 -04:00
) -> Result<Params<C, A>, FrostError> {
let mut included = included.to_vec();
included.sort_unstable();
2022-04-30 04:32:19 -04:00
// Included < threshold
if included.len() < usize::from(keys.params.t) {
Err(FrostError::InvalidSigningSet("not enough signers"))?;
}
// Invalid index
if included[0] == 0 {
Err(FrostError::InvalidParticipantIndex(included[0], keys.params.n))?;
}
// OOB index
if included[included.len() - 1] > keys.params.n {
Err(FrostError::InvalidParticipantIndex(included[included.len() - 1], keys.params.n))?;
}
// Same signer included multiple times
for i in 0 .. included.len() - 1 {
if included[i] == included[i + 1] {
Err(FrostError::DuplicatedIndex(included[i]))?;
}
}
// Not included
if !included.contains(&keys.params.i) {
Err(FrostError::InvalidSigningSet("signing despite not being included"))?;
}
2022-04-30 04:32:19 -04:00
// Out of order arguments to prevent additional cloning
Ok(Params { algorithm, view: keys.view(&included).unwrap(), keys })
}
pub fn multisig_params(&self) -> FrostParams {
self.keys.params
}
2022-04-29 15:28:04 -04:00
pub fn view(&self) -> FrostView<C> {
2022-04-29 15:28:04 -04:00
self.view.clone()
}
}
fn nonce_transcript<T: Transcript>() -> T {
T::new(b"FROST_nonce_dleq")
}
pub(crate) struct PreprocessPackage<C: Curve> {
pub(crate) nonces: Vec<[C::F; 2]>,
pub(crate) commitments: Vec<Vec<[C::G; 2]>>,
pub(crate) addendum: Vec<u8>,
}
// This library unifies the preprocessing step with signing due to security concerns and to provide
// a simpler UX
fn preprocess<R: RngCore + CryptoRng, C: Curve, A: Algorithm<C>>(
rng: &mut R,
params: &mut Params<C, A>,
) -> (PreprocessPackage<C>, Vec<u8>) {
let mut serialized = Vec::with_capacity(2 * C::G_len());
2022-07-15 01:26:07 -04:00
let (nonces, commitments) = params
.algorithm
.nonces()
.iter()
.map(|generators| {
let nonces = [
C::random_nonce(params.view().secret_share(), &mut *rng),
2022-07-15 01:26:07 -04:00
C::random_nonce(params.view().secret_share(), &mut *rng),
];
let commit = |generator: C::G, buf: &mut Vec<u8>| {
let commitments = [generator * nonces[0], generator * nonces[1]];
buf.extend(commitments[0].to_bytes().as_ref());
buf.extend(commitments[1].to_bytes().as_ref());
commitments
};
let mut commitments = Vec::with_capacity(generators.len());
for generator in generators.iter() {
commitments.push(commit(*generator, &mut serialized));
}
// Provide a DLEq proof to verify these commitments are for the same nonce
if generators.len() >= 2 {
// Uses an independent transcript as each signer must do this now, yet we validate them
// sequentially by the global order. Avoids needing to clone and fork the transcript around
let mut transcript = nonce_transcript::<A::Transcript>();
// This could be further optimized with a multi-nonce proof.
// See https://github.com/serai-dex/serai/issues/38
for nonce in nonces {
DLEqProof::prove(&mut *rng, &mut transcript, generators, nonce)
2022-07-15 01:26:07 -04:00
.serialize(&mut serialized)
.unwrap();
}
}
(nonces, commitments)
2022-07-15 01:26:07 -04:00
})
.unzip();
let addendum = params.algorithm.preprocess_addendum(rng, &params.view);
serialized.extend(&addendum);
(PreprocessPackage { nonces, commitments, addendum }, serialized)
}
#[allow(non_snake_case)]
fn read_D_E<Re: Read, C: Curve>(cursor: &mut Re, l: u16) -> Result<[C::G; 2], FrostError> {
Ok([
C::read_G(cursor).map_err(|_| FrostError::InvalidCommitment(l))?,
2022-07-15 01:26:07 -04:00
C::read_G(cursor).map_err(|_| FrostError::InvalidCommitment(l))?,
])
}
#[allow(non_snake_case)]
struct Package<C: Curve> {
2022-07-12 02:45:18 -04:00
B: HashMap<u16, (Vec<Vec<[C::G; 2]>>, C::F)>,
Rs: Vec<Vec<C::G>>,
share: C::F,
}
// Has every signer perform the role of the signature aggregator
// Step 1 was already deprecated by performing nonce generation as needed
// Step 2 is simply the broadcast round from step 1
fn sign_with_share<Re: Read, C: Curve, A: Algorithm<C>>(
params: &mut Params<C, A>,
our_preprocess: PreprocessPackage<C>,
mut commitments: HashMap<u16, Re>,
msg: &[u8],
) -> Result<(Package<C>, Vec<u8>), FrostError> {
let multisig_params = params.multisig_params();
validate_map(&mut commitments, &params.view.included, multisig_params.i)?;
2022-05-06 07:33:08 -04:00
{
2022-05-23 03:24:33 -04:00
// Domain separate FROST
params.algorithm.transcript().domain_separate(b"FROST");
2022-05-06 07:33:08 -04:00
}
let nonces = params.algorithm.nonces();
#[allow(non_snake_case)]
let mut B = HashMap::<u16, _>::with_capacity(params.view.included.len());
2022-07-12 02:45:18 -04:00
{
// Parse the commitments
for l in &params.view.included {
{
params.algorithm.transcript().append_message(b"participant", &l.to_be_bytes());
}
// While this doesn't note which nonce/basepoint this is for, those are expected to be
// static. Beyond that, they're committed to in the DLEq proof transcripts, ensuring
// consistency. While this is suboptimal, it maintains IETF compliance, and Algorithm is
// documented accordingly
let transcript = |t: &mut A::Transcript, commitments: [C::G; 2]| {
t.append_message(b"commitment_D", commitments[0].to_bytes().as_ref());
t.append_message(b"commitment_E", commitments[1].to_bytes().as_ref());
};
if *l == params.keys.params.i {
for nonce_commitments in &our_preprocess.commitments {
for commitments in nonce_commitments {
transcript(params.algorithm.transcript(), *commitments);
}
}
B.insert(*l, (our_preprocess.commitments.clone(), C::F::zero()));
params.algorithm.process_addendum(
&params.view,
*l,
2022-07-15 01:26:07 -04:00
&mut Cursor::new(our_preprocess.addendum.clone()),
)?;
} else {
let mut cursor = commitments.remove(l).unwrap();
let mut commitments = Vec::with_capacity(nonces.len());
for (n, nonce_generators) in nonces.clone().iter_mut().enumerate() {
commitments.push(Vec::with_capacity(nonce_generators.len()));
for _ in 0 .. nonce_generators.len() {
commitments[n].push(read_D_E::<_, C>(&mut cursor, *l)?);
transcript(params.algorithm.transcript(), commitments[n][commitments[n].len() - 1]);
}
if nonce_generators.len() >= 2 {
let mut transcript = nonce_transcript::<A::Transcript>();
for de in 0 .. 2 {
2022-07-15 01:26:07 -04:00
DLEqProof::deserialize(&mut cursor)
.map_err(|_| FrostError::InvalidCommitment(*l))?
.verify(
&mut transcript,
nonce_generators,
2022-07-15 01:26:07 -04:00
&commitments[n].iter().map(|commitments| commitments[de]).collect::<Vec<_>>(),
)
.map_err(|_| FrostError::InvalidCommitment(*l))?;
}
}
}
B.insert(*l, (commitments, C::F::zero()));
params.algorithm.process_addendum(&params.view, *l, &mut cursor)?;
}
}
2022-07-12 02:45:18 -04:00
// Re-format into the FROST-expected rho transcript
let mut rho_transcript = A::Transcript::new(b"FROST_rho");
rho_transcript.append_message(b"message", &C::hash_msg(msg));
// This won't just be the commitments, yet the full existing transcript if used in an extended
// protocol
2022-07-12 02:45:18 -04:00
rho_transcript.append_message(
b"commitments",
2022-07-15 01:26:07 -04:00
&C::hash_msg(params.algorithm.transcript().challenge(b"commitments").as_ref()),
2022-07-12 02:45:18 -04:00
);
// Include the offset, if one exists
// While this isn't part of the FROST-expected rho transcript, the offset being here coincides
// with another specification
if let Some(offset) = params.keys.offset {
rho_transcript.append_message(b"offset", offset.to_repr().as_ref());
}
2022-07-12 02:45:18 -04:00
// Generate the per-signer binding factors
for (l, commitments) in B.iter_mut() {
let mut rho_transcript = rho_transcript.clone();
rho_transcript.append_message(b"participant", &l.to_be_bytes());
commitments.1 = C::hash_binding_factor(rho_transcript.challenge(b"rho").as_ref());
}
// Merge the rho transcript back into the global one to ensure its advanced while committing to
// everything
2022-07-15 01:26:07 -04:00
params
.algorithm
.transcript()
.append_message(b"rho_transcript", rho_transcript.challenge(b"merge").as_ref());
}
#[allow(non_snake_case)]
let mut Rs = Vec::with_capacity(nonces.len());
for n in 0 .. nonces.len() {
Rs.push(vec![C::G::identity(); nonces[n].len()]);
for g in 0 .. nonces[n].len() {
#[allow(non_snake_case)]
let mut D = C::G::identity();
let mut statements = Vec::with_capacity(B.len());
#[allow(non_snake_case)]
for (B, binding) in B.values() {
D += B[n][g][0];
statements.push((*binding, B[n][g][1]));
}
Rs[n][g] = D + multiexp_vartime(&statements);
}
}
let share = params.algorithm.sign_share(
&params.view,
&Rs,
2022-07-15 01:26:07 -04:00
&our_preprocess
.nonces
.iter()
.map(|nonces| nonces[0] + (nonces[1] * B[&params.keys.params.i()].1))
.collect::<Vec<_>>(),
msg,
);
Ok((Package { B, Rs, share }, share.to_repr().as_ref().to_vec()))
}
fn complete<Re: Read, C: Curve, A: Algorithm<C>>(
sign_params: &Params<C, A>,
sign: Package<C>,
mut shares: HashMap<u16, Re>,
) -> Result<A::Signature, FrostError> {
let params = sign_params.multisig_params();
validate_map(&mut shares, &sign_params.view.included, params.i)?;
let mut responses = HashMap::new();
let mut sum = C::F::zero();
for l in &sign_params.view.included {
let part = if *l == params.i {
sign.share
} else {
C::read_F(shares.get_mut(l).unwrap()).map_err(|_| FrostError::InvalidShare(*l))?
};
sum += part;
responses.insert(*l, part);
}
// Perform signature validation instead of individual share validation
// For the success route, which should be much more frequent, this should be faster
// It also acts as an integrity check of this library's signing function
let res = sign_params.algorithm.verify(sign_params.view.group_key, &sign.Rs, sum);
if let Some(res) = res {
return Ok(res);
}
// Find out who misbehaved. It may be beneficial to randomly sort this to have detection be
// within n / 2 on average, and not gameable to n, though that should be minor
for l in &sign_params.view.included {
if !sign_params.algorithm.verify_share(
sign_params.view.verification_share(*l),
2022-07-15 01:26:07 -04:00
&sign.B[l]
.0
.iter()
.map(|nonces| {
nonces.iter().map(|commitments| commitments[0] + (commitments[1] * sign.B[l].1)).collect()
})
.collect::<Vec<_>>(),
responses[l],
) {
Err(FrostError::InvalidShare(*l))?;
}
}
// If everyone has a valid share and there were enough participants, this should've worked
2022-07-15 01:26:07 -04:00
Err(FrostError::InternalError("everyone had a valid share yet the signature was still invalid"))
}
pub trait PreprocessMachine {
2022-05-25 00:21:01 -04:00
type Signature: Clone + PartialEq + fmt::Debug;
type SignMachine: SignMachine<Self::Signature>;
/// Perform the preprocessing round required in order to sign
/// Returns a byte vector which must be transmitted to all parties selected for this signing
/// process, over an authenticated channel
2022-07-15 01:26:07 -04:00
fn preprocess<R: RngCore + CryptoRng>(self, rng: &mut R) -> (Self::SignMachine, Vec<u8>);
}
pub trait SignMachine<S> {
type SignatureMachine: SignatureMachine<S>;
/// Sign a message
/// Takes in the participant's commitments, which are expected to be in a Vec where participant
/// index = Vec index. None is expected at index 0 to allow for this. None is also expected at
/// index i which is locally handled. Returns a byte vector representing a share of the signature
/// for every other participant to receive, over an authenticated channel
fn sign<Re: Read>(
self,
commitments: HashMap<u16, Re>,
msg: &[u8],
) -> Result<(Self::SignatureMachine, Vec<u8>), FrostError>;
}
pub trait SignatureMachine<S> {
/// Complete signing
/// Takes in everyone elses' shares submitted to us as a Vec, expecting participant index =
/// Vec index with None at index 0 and index i. Returns a byte vector representing the serialized
/// signature
fn complete<Re: Read>(self, shares: HashMap<u16, Re>) -> Result<S, FrostError>;
}
/// State machine which manages signing for an arbitrary signature algorithm
pub struct AlgorithmMachine<C: Curve, A: Algorithm<C>> {
2022-07-15 01:26:07 -04:00
params: Params<C, A>,
}
pub struct AlgorithmSignMachine<C: Curve, A: Algorithm<C>> {
params: Params<C, A>,
preprocess: PreprocessPackage<C>,
}
pub struct AlgorithmSignatureMachine<C: Curve, A: Algorithm<C>> {
params: Params<C, A>,
sign: Package<C>,
}
impl<C: Curve, A: Algorithm<C>> AlgorithmMachine<C, A> {
/// Creates a new machine to generate a key for the specified curve in the specified multisig
pub fn new(
algorithm: A,
keys: Arc<FrostKeys<C>>,
included: &[u16],
) -> Result<AlgorithmMachine<C, A>, FrostError> {
Ok(AlgorithmMachine { params: Params::new(algorithm, keys, included)? })
}
pub(crate) fn unsafe_override_preprocess(
self,
2022-07-15 01:26:07 -04:00
preprocess: PreprocessPackage<C>,
) -> AlgorithmSignMachine<C, A> {
AlgorithmSignMachine { params: self.params, preprocess }
}
}
impl<C: Curve, A: Algorithm<C>> PreprocessMachine for AlgorithmMachine<C, A> {
type Signature = A::Signature;
type SignMachine = AlgorithmSignMachine<C, A>;
2022-07-15 01:26:07 -04:00
fn preprocess<R: RngCore + CryptoRng>(self, rng: &mut R) -> (Self::SignMachine, Vec<u8>) {
let mut params = self.params;
let (preprocess, serialized) = preprocess::<R, C, A>(rng, &mut params);
(AlgorithmSignMachine { params, preprocess }, serialized)
}
}
impl<C: Curve, A: Algorithm<C>> SignMachine<A::Signature> for AlgorithmSignMachine<C, A> {
type SignatureMachine = AlgorithmSignatureMachine<C, A>;
fn sign<Re: Read>(
self,
commitments: HashMap<u16, Re>,
2022-07-15 01:26:07 -04:00
msg: &[u8],
) -> Result<(Self::SignatureMachine, Vec<u8>), FrostError> {
let mut params = self.params;
let (sign, serialized) = sign_with_share(&mut params, self.preprocess, commitments, msg)?;
Ok((AlgorithmSignatureMachine { params, sign }, serialized))
}
}
2022-07-15 01:26:07 -04:00
impl<C: Curve, A: Algorithm<C>> SignatureMachine<A::Signature> for AlgorithmSignatureMachine<C, A> {
fn complete<Re: Read>(self, shares: HashMap<u16, Re>) -> Result<A::Signature, FrostError> {
complete(&self.params, self.sign, shares)
}
}