Files
serai/coordinator/src/tests/tributary/dkg.rs

283 lines
8.8 KiB
Rust
Raw Normal View History

use core::time::Duration;
use zeroize::Zeroizing;
use rand_core::{RngCore, OsRng};
use ciphersuite::{group::GroupEncoding, Ciphersuite, Ristretto};
use frost::Participant;
use sp_runtime::traits::Verify;
use serai_client::{
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
primitives::Signature,
validator_sets::primitives::{ValidatorSet, KeyPair},
};
use tokio::time::sleep;
use serai_db::{Get, DbTxn, Db, MemDb};
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
use processor_messages::{key_gen, CoordinatorMessage};
Slash malevolent validators (#294) * add slash tx * ignore unsigned tx replays * verify that provided evidence is valid * fix clippy + fmt * move application tx handling to another module * partially handle the tendermint txs * fix pr comments * support unsigned app txs * add slash target to the votes * enforce provided, unsigned, signed tx ordering within a block * bug fixes * add unit test for tendermint txs * bug fixes * update tests for tendermint txs * add tx ordering test * tidy up tx ordering test * cargo +nightly fmt * Misc fixes from rebasing * Finish resolving clippy * Remove sha3 from tendermint-machine * Resolve a DoS in SlashEvidence's read Also moves Evidence from Vec<Message> to (Message, Option<Message>). That should meet all requirements while being a bit safer. * Make lazy_static a dev-depend for tributary * Various small tweaks One use of sort was inefficient, sorting unsigned || signed when unsigned was already properly sorted. Given how the unsigned TXs were given a nonce of 0, an unstable sort may swap places with an unsigned TX and a signed TX with a nonce of 0 (leading to a faulty block). The extra protection added here sorts signed, then concats. * Fix Tributary tests I broke, start review on tendermint/tx.rs * Finish reviewing everything outside tests and empty_signature * Remove empty_signature empty_signature led to corrupted local state histories. Unfortunately, the API is only sane with a signature. We now use the actual signature, which risks creating a signature over a malicious message if we have ever have an invariant producing malicious messages. Prior, we only signed the message after the local machine confirmed it was okay per the local view of consensus. This is tolerated/preferred over a corrupt state history since production of such messages is already an invariant. TODOs are added to make handling of this theoretical invariant further robust. * Remove async_sequential for tokio::test There was no competition for resources forcing them to be run sequentially. * Modify block order test to be statistically significant without multiple runs * Clean tests --------- Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-08-21 07:28:23 +03:00
use tributary::{TransactionTrait, Tributary};
use crate::{
tributary::{
Transaction, TributarySpec,
scanner::{PublishSeraiTransaction, handle_new_blocks},
},
tests::{
MemProcessors, LocalP2p,
tributary::{new_keys, new_spec, new_tributaries, run_tributaries, wait_for_tx_inclusion},
},
};
#[tokio::test]
2023-04-23 02:18:41 -04:00
async fn dkg_test() {
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
env_logger::init();
let keys = new_keys(&mut OsRng);
let spec = new_spec(&mut OsRng, &keys);
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
let full_tributaries = new_tributaries(&keys, &spec).await;
let mut dbs = vec![];
let mut tributaries = vec![];
for (db, p2p, tributary) in full_tributaries {
dbs.push(db);
tributaries.push((p2p, tributary));
}
// Run the tributaries in the background
tokio::spawn(run_tributaries(tributaries.clone()));
let mut txs = vec![];
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// Create DKG participation for each key
for key in &keys {
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
let mut participation = vec![0; 4096];
OsRng.fill_bytes(&mut participation);
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
let mut tx =
Transaction::DkgParticipation { participation, signed: Transaction::empty_signed() };
tx.sign(&mut OsRng, spec.genesis(), key);
txs.push(tx);
}
let block_before_tx = tributaries[0].1.tip().await;
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// Publish t-1 participations
let t = ((keys.len() * 2) / 3) + 1;
for (i, tx) in txs.iter().take(t - 1).enumerate() {
assert_eq!(tributaries[i].1.add_transaction(tx.clone()).await, Ok(true));
wait_for_tx_inclusion(&tributaries[0].1, block_before_tx, tx.hash()).await;
}
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
let expected_participations = txs
.iter()
.enumerate()
.map(|(i, tx)| {
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
if let Transaction::DkgParticipation { participation, .. } = tx {
CoordinatorMessage::KeyGen(key_gen::CoordinatorMessage::Participation {
session: spec.set().session,
participant: Participant::new((i + 1).try_into().unwrap()).unwrap(),
participation: participation.clone(),
})
} else {
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
panic!("txs wasn't a DkgParticipation");
}
})
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
.collect::<Vec<_>>();
async fn new_processors(
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
db: &mut MemDb,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
spec: &TributarySpec,
tributary: &Tributary<MemDb, Transaction, LocalP2p>,
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
) -> MemProcessors {
let processors = MemProcessors::new();
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
handle_new_blocks::<_, _, _, _, _, LocalP2p>(
db,
key,
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
&|_, _, _, _| async {
panic!("provided TX caused recognized_id to be called in new_processors")
},
&processors,
&(),
&|_| async {
panic!(
"test tried to publish a new Tributary TX from handle_application_tx in new_processors"
)
},
spec,
&tributary.reader(),
)
.await;
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
processors
}
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// Instantiate a scanner and verify it has the first two participations to report (and isn't
// waiting for `t`)
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
let processors = new_processors(&mut dbs[0], &keys[0], &spec, &tributaries[0].1).await;
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
assert_eq!(processors.0.read().await.get(&spec.set().network).unwrap().len(), t - 1);
2023-04-23 02:18:41 -04:00
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// Publish the rest of the participations
let block_before_tx = tributaries[0].1.tip().await;
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
for tx in txs.iter().skip(t - 1) {
assert_eq!(tributaries[0].1.add_transaction(tx.clone()).await, Ok(true));
wait_for_tx_inclusion(&tributaries[0].1, block_before_tx, tx.hash()).await;
}
2023-04-23 02:18:41 -04:00
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// Verify the scanner emits all KeyGen::Participations messages
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
handle_new_blocks::<_, _, _, _, _, LocalP2p>(
&mut dbs[0],
&keys[0],
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
&|_, _, _, _| async {
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
panic!("provided TX caused recognized_id to be called after DkgParticipation")
},
&processors,
&(),
&|_| async {
panic!(
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
"test tried to publish a new Tributary TX from handle_application_tx after DkgParticipation"
)
},
&spec,
&tributaries[0].1.reader(),
)
.await;
{
let mut msgs = processors.0.write().await;
let msgs = msgs.get_mut(&spec.set().network).unwrap();
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
assert_eq!(msgs.len(), keys.len());
for expected in &expected_participations {
assert_eq!(&msgs.pop_front().unwrap(), expected);
}
assert!(msgs.is_empty());
}
// Verify all keys exhibit this scanner behavior
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
for (i, key) in keys.iter().enumerate().skip(1) {
let processors = new_processors(&mut dbs[i], key, &spec, &tributaries[i].1).await;
let mut msgs = processors.0.write().await;
let msgs = msgs.get_mut(&spec.set().network).unwrap();
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
assert_eq!(msgs.len(), keys.len());
for expected in &expected_participations {
assert_eq!(&msgs.pop_front().unwrap(), expected);
}
2023-04-23 02:18:41 -04:00
assert!(msgs.is_empty());
}
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
let mut substrate_key = [0; 32];
OsRng.fill_bytes(&mut substrate_key);
let mut network_key = vec![0; usize::try_from((OsRng.next_u64() % 32) + 32).unwrap()];
OsRng.fill_bytes(&mut network_key);
let key_pair = KeyPair(serai_client::Public(substrate_key), network_key.try_into().unwrap());
2023-04-23 02:18:41 -04:00
let mut txs = vec![];
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
for (i, key) in keys.iter().enumerate() {
let mut txn = dbs[i].txn();
2023-04-23 02:18:41 -04:00
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// Claim we've generated the key pair
crate::tributary::generated_key_pair::<MemDb>(&mut txn, spec.genesis(), &key_pair);
2023-04-23 02:18:41 -04:00
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// Publish the nonces
let attempt = 0;
let mut tx = Transaction::DkgConfirmationNonces {
attempt,
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
confirmation_nonces: crate::tributary::dkg_confirmation_nonces(key, &spec, &mut txn, 0),
signed: Transaction::empty_signed(),
};
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
txn.commit();
tx.sign(&mut OsRng, spec.genesis(), key);
2023-04-23 02:18:41 -04:00
txs.push(tx);
}
let block_before_tx = tributaries[0].1.tip().await;
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
for (i, tx) in txs.iter().enumerate() {
assert_eq!(tributaries[i].1.add_transaction(tx.clone()).await, Ok(true));
2023-04-23 02:18:41 -04:00
}
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
for tx in &txs {
2023-04-23 02:18:41 -04:00
wait_for_tx_inclusion(&tributaries[0].1, block_before_tx, tx.hash()).await;
}
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// This should not cause any new processor event as the processor doesn't handle DKG confirming
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
for (i, key) in keys.iter().enumerate() {
handle_new_blocks::<_, _, _, _, _, LocalP2p>(
&mut dbs[i],
key,
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
&|_, _, _, _| async {
panic!("provided TX caused recognized_id to be called after DkgConfirmationNonces")
},
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
&processors,
&(),
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// The Tributary handler should publish ConfirmationShare itself after ConfirmationNonces
&|tx| async { assert_eq!(tributaries[i].1.add_transaction(tx).await, Ok(true)) },
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
&spec,
&tributaries[i].1.reader(),
)
.await;
{
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
assert!(processors.0.read().await.get(&spec.set().network).unwrap().is_empty());
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
}
2023-04-23 02:18:41 -04:00
}
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
// Yet once these TXs are on-chain, the tributary should itself publish the confirmation shares
// This means in the block after the next block, the keys should be set onto Serai
// Sleep twice as long as two blocks, in case there's some stability issue
sleep(Duration::from_secs(
2 * 2 * u64::from(Tributary::<MemDb, Transaction, LocalP2p>::block_time()),
))
.await;
struct CheckPublishSetKeys {
spec: TributarySpec,
key_pair: KeyPair,
}
#[async_trait::async_trait]
impl PublishSeraiTransaction for CheckPublishSetKeys {
async fn publish_set_keys(
&self,
_db: &(impl Sync + Get),
set: ValidatorSet,
key_pair: KeyPair,
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
signature_participants: bitvec::vec::BitVec<u8, bitvec::order::Lsb0>,
signature: Signature,
) {
assert_eq!(set, self.spec.set());
assert_eq!(self.key_pair, key_pair);
assert!(signature.verify(
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
&*serai_client::validator_sets::primitives::set_keys_message(&set, &key_pair),
&serai_client::Public(
frost::dkg::musig::musig_key::<Ristretto>(
&serai_client::validator_sets::primitives::musig_context(set),
One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
&self
.spec
.validators()
.into_iter()
.zip(signature_participants)
.filter_map(|((validator, _), included)| included.then_some(validator))
.collect::<Vec<_>>()
)
.unwrap()
.to_bytes()
),
));
}
}
// The scanner should successfully try to publish a transaction with a validly signed signature
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
handle_new_blocks::<_, _, _, _, _, LocalP2p>(
&mut dbs[0],
&keys[0],
Coordinator Cleanup (#481) * Move logic for evaluating if a cosign should occur to its own file Cleans it up and makes it more robust. * Have expected_next_batch return an error instead of retrying While convenient to offer an error-free implementation, it potentially caused very long lived lock acquisitions in handle_processor_message. * Unify and clean DkgConfirmer and DkgRemoval Does so via adding a new file for the common code, SigningProtocol. Modifies from_cache to return the preprocess with the machine, as there's no reason not to. Also removes an unused Result around the type. Clarifies the security around deterministic nonces, removing them for saved-to-disk cached preprocesses. The cached preprocesses are encrypted as the DB is not a proper secret store. Moves arguments always present in the protocol from function arguments into the struct itself. Removes the horribly ugly code in DkgRemoval, fixing multiple issues present with it which would cause it to fail on use. * Set SeraiBlockNumber in cosign.rs as it's used by the cosigning protocol * Remove unnecessary Clone from lambdas in coordinator * Remove the EventDb from Tributary scanner We used per-Transaction DB TXNs so on error, we don't have to rescan the entire block yet only the rest of it. We prevented scanning multiple transactions by tracking which we already had. This is over-engineered and not worth it. * Implement borsh for HasEvents, removing the manual encoding * Merge DkgConfirmer and DkgRemoval into signing_protocol.rs Fixes a bug in DkgConfirmer which would cause it to improperly handle indexes if any validator had multiple key shares. * Strictly type DataSpecification's Label * Correct threshold_i_map_to_keys_and_musig_i_map It didn't include the participant's own index and accordingly was offset. * Create TributaryBlockHandler This struct contains all variables prior passed to handle_block and stops them from being passed around again and again. This also ensures fatal_slash is only called while handling a block, as needed as it expects to operate under perfect consensus. * Inline accumulate, store confirmation nonces with shares Inlining accumulate makes sense due to the amount of data accumulate needed to be passed. Storing confirmation nonces with shares ensures that both are available or neither. Prior, one could be yet the other may not have been (requiring an assert in runtime to ensure we didn't bungle it somehow). * Create helper functions for handling DkgRemoval/SubstrateSign/Sign Tributary TXs * Move Label into SignData All of our transactions which use SignData end up with the same common usage pattern for Label, justifying this. Removes 3 transactions, explicitly de-duplicating their handlers. * Remove CurrentlyCompletingKeyPair for the non-contextual DkgKeyPair * Remove the manual read/write for TributarySpec for borsh This struct doesn't have any optimizations booned by the manual impl. Using borsh reduces our scope. * Use temporary variables to further minimize LoC in tributary handler * Remove usage of tuples for non-trivial Tributary transactions * Remove serde from dkg serde could be used to deserialize intenrally inconsistent objects which could lead to panics or faults. The BorshDeserialize derives have been replaced with a manual implementation which won't produce inconsistent objects. * Abstract Future generics using new trait definitions in coordinator * Move published_signed_transaction to tributary/mod.rs to reduce the size of main.rs * Split coordinator/src/tributary/mod.rs into spec.rs and transaction.rs
2023-12-10 20:21:44 -05:00
&|_, _, _, _| async {
panic!("provided TX caused recognized_id to be called after DKG confirmation")
},
&processors,
&CheckPublishSetKeys { spec: spec.clone(), key_pair: key_pair.clone() },
&|_| async { panic!("test tried to publish a new Tributary TX from handle_application_tx") },
&spec,
&tributaries[0].1.reader(),
)
.await;
{
assert!(processors.0.read().await.get(&spec.set().network).unwrap().is_empty());
}
}