Files
serai/coordinator/src/tributary/mod.rs

559 lines
17 KiB
Rust
Raw Normal View History

use core::ops::Deref;
use std::{
io::{self, Read, Write},
collections::HashMap,
};
use zeroize::Zeroizing;
use rand_core::{RngCore, CryptoRng};
use blake2::{Digest, Blake2s256};
use transcript::{Transcript, RecommendedTranscript};
use ciphersuite::{
group::{ff::Field, GroupEncoding},
Ciphersuite, Ristretto,
};
use schnorr::SchnorrSignature;
use frost::Participant;
use scale::{Encode, Decode};
use serai_client::{
primitives::NetworkId,
validator_sets::primitives::{Session, ValidatorSet, ValidatorSetData},
};
#[rustfmt::skip]
use tributary::{
Slash malevolent validators (#294) * add slash tx * ignore unsigned tx replays * verify that provided evidence is valid * fix clippy + fmt * move application tx handling to another module * partially handle the tendermint txs * fix pr comments * support unsigned app txs * add slash target to the votes * enforce provided, unsigned, signed tx ordering within a block * bug fixes * add unit test for tendermint txs * bug fixes * update tests for tendermint txs * add tx ordering test * tidy up tx ordering test * cargo +nightly fmt * Misc fixes from rebasing * Finish resolving clippy * Remove sha3 from tendermint-machine * Resolve a DoS in SlashEvidence's read Also moves Evidence from Vec<Message> to (Message, Option<Message>). That should meet all requirements while being a bit safer. * Make lazy_static a dev-depend for tributary * Various small tweaks One use of sort was inefficient, sorting unsigned || signed when unsigned was already properly sorted. Given how the unsigned TXs were given a nonce of 0, an unstable sort may swap places with an unsigned TX and a signed TX with a nonce of 0 (leading to a faulty block). The extra protection added here sorts signed, then concats. * Fix Tributary tests I broke, start review on tendermint/tx.rs * Finish reviewing everything outside tests and empty_signature * Remove empty_signature empty_signature led to corrupted local state histories. Unfortunately, the API is only sane with a signature. We now use the actual signature, which risks creating a signature over a malicious message if we have ever have an invariant producing malicious messages. Prior, we only signed the message after the local machine confirmed it was okay per the local view of consensus. This is tolerated/preferred over a corrupt state history since production of such messages is already an invariant. TODOs are added to make handling of this theoretical invariant further robust. * Remove async_sequential for tokio::test There was no competition for resources forcing them to be run sequentially. * Modify block order test to be statistically significant without multiple runs * Clean tests --------- Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-08-21 07:28:23 +03:00
ReadWrite,
transaction::{Signed, TransactionError, TransactionKind, Transaction as TransactionTrait}
};
2023-04-20 05:05:17 -04:00
mod db;
pub use db::*;
Slash malevolent validators (#294) * add slash tx * ignore unsigned tx replays * verify that provided evidence is valid * fix clippy + fmt * move application tx handling to another module * partially handle the tendermint txs * fix pr comments * support unsigned app txs * add slash target to the votes * enforce provided, unsigned, signed tx ordering within a block * bug fixes * add unit test for tendermint txs * bug fixes * update tests for tendermint txs * add tx ordering test * tidy up tx ordering test * cargo +nightly fmt * Misc fixes from rebasing * Finish resolving clippy * Remove sha3 from tendermint-machine * Resolve a DoS in SlashEvidence's read Also moves Evidence from Vec<Message> to (Message, Option<Message>). That should meet all requirements while being a bit safer. * Make lazy_static a dev-depend for tributary * Various small tweaks One use of sort was inefficient, sorting unsigned || signed when unsigned was already properly sorted. Given how the unsigned TXs were given a nonce of 0, an unstable sort may swap places with an unsigned TX and a signed TX with a nonce of 0 (leading to a faulty block). The extra protection added here sorts signed, then concats. * Fix Tributary tests I broke, start review on tendermint/tx.rs * Finish reviewing everything outside tests and empty_signature * Remove empty_signature empty_signature led to corrupted local state histories. Unfortunately, the API is only sane with a signature. We now use the actual signature, which risks creating a signature over a malicious message if we have ever have an invariant producing malicious messages. Prior, we only signed the message after the local machine confirmed it was okay per the local view of consensus. This is tolerated/preferred over a corrupt state history since production of such messages is already an invariant. TODOs are added to make handling of this theoretical invariant further robust. * Remove async_sequential for tokio::test There was no competition for resources forcing them to be run sequentially. * Modify block order test to be statistically significant without multiple runs * Clean tests --------- Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-08-21 07:28:23 +03:00
mod handle;
pub use handle::*;
2023-04-20 05:05:17 -04:00
pub mod scanner;
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct TributarySpec {
serai_block: [u8; 32],
start_time: u64,
set: ValidatorSet,
validators: Vec<(<Ristretto as Ciphersuite>::G, u64)>,
}
impl TributarySpec {
pub fn new(
serai_block: [u8; 32],
start_time: u64,
set: ValidatorSet,
set_data: ValidatorSetData,
) -> TributarySpec {
let mut validators = vec![];
for (participant, amount) in set_data.participants {
// TODO: Ban invalid keys from being validators on the Serai side
let participant = <Ristretto as Ciphersuite>::read_G::<&[u8]>(&mut participant.0.as_ref())
.expect("invalid key registered as participant");
// Give one weight on Tributary per bond instance
validators.push((participant, amount.0 / set_data.bond.0));
}
Self { serai_block, start_time, set, validators }
}
pub fn set(&self) -> ValidatorSet {
self.set
}
pub fn genesis(&self) -> [u8; 32] {
// Calculate the genesis for this Tributary
let mut genesis = RecommendedTranscript::new(b"Serai Tributary Genesis");
// This locks it to a specific Serai chain
genesis.append_message(b"serai_block", self.serai_block);
genesis.append_message(b"session", self.set.session.0.to_le_bytes());
genesis.append_message(b"network", self.set.network.encode());
let genesis = genesis.challenge(b"genesis");
let genesis_ref: &[u8] = genesis.as_ref();
genesis_ref[.. 32].try_into().unwrap()
}
pub fn start_time(&self) -> u64 {
self.start_time
}
pub fn n(&self) -> u16 {
// TODO: Support multiple key shares
// self.validators.iter().map(|(_, weight)| u16::try_from(weight).unwrap()).sum()
self.validators().len().try_into().unwrap()
}
pub fn t(&self) -> u16 {
((2 * self.n()) / 3) + 1
2023-04-20 05:05:17 -04:00
}
pub fn i(&self, key: <Ristretto as Ciphersuite>::G) -> Option<Participant> {
let mut i = 1;
// TODO: Support multiple key shares
for (validator, _weight) in &self.validators {
if validator == &key {
// return (i .. (i + weight)).to_vec();
return Some(Participant::new(i).unwrap());
}
// i += weight;
i += 1;
}
None
}
pub fn validators(&self) -> Vec<(<Ristretto as Ciphersuite>::G, u64)> {
self.validators.clone()
2023-04-20 05:05:17 -04:00
}
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.serai_block)?;
writer.write_all(&self.start_time.to_le_bytes())?;
writer.write_all(&self.set.session.0.to_le_bytes())?;
let network_encoded = self.set.network.encode();
assert_eq!(network_encoded.len(), 1);
writer.write_all(&network_encoded)?;
writer.write_all(&u32::try_from(self.validators.len()).unwrap().to_le_bytes())?;
for validator in &self.validators {
writer.write_all(&validator.0.to_bytes())?;
writer.write_all(&validator.1.to_le_bytes())?;
}
Ok(())
}
pub fn serialize(&self) -> Vec<u8> {
let mut res = vec![];
self.write(&mut res).unwrap();
res
}
pub fn read<R: Read>(reader: &mut R) -> io::Result<Self> {
let mut serai_block = [0; 32];
reader.read_exact(&mut serai_block)?;
let mut start_time = [0; 8];
reader.read_exact(&mut start_time)?;
let start_time = u64::from_le_bytes(start_time);
let mut session = [0; 4];
reader.read_exact(&mut session)?;
let session = Session(u32::from_le_bytes(session));
let mut network = [0; 1];
reader.read_exact(&mut network)?;
let network = NetworkId::decode(&mut &network[..])
.map_err(|_| io::Error::new(io::ErrorKind::Other, "invalid network"))?;
let mut validators_len = [0; 4];
reader.read_exact(&mut validators_len)?;
let validators_len = usize::try_from(u32::from_le_bytes(validators_len)).unwrap();
let mut validators = Vec::with_capacity(validators_len);
for _ in 0 .. validators_len {
let key = Ristretto::read_G(reader)?;
let mut bond = [0; 8];
reader.read_exact(&mut bond)?;
validators.push((key, u64::from_le_bytes(bond)));
}
Ok(Self { serai_block, start_time, set: ValidatorSet { session, network }, validators })
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct SignData {
pub plan: [u8; 32],
pub attempt: u32,
pub data: Vec<u8>,
pub signed: Signed,
}
impl ReadWrite for SignData {
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut plan = [0; 32];
reader.read_exact(&mut plan)?;
let mut attempt = [0; 4];
reader.read_exact(&mut attempt)?;
let attempt = u32::from_le_bytes(attempt);
let data = {
let mut data_len = [0; 2];
reader.read_exact(&mut data_len)?;
let mut data = vec![0; usize::from(u16::from_le_bytes(data_len))];
reader.read_exact(&mut data)?;
data
};
let signed = Signed::read(reader)?;
Ok(SignData { plan, attempt, data, signed })
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.plan)?;
writer.write_all(&self.attempt.to_le_bytes())?;
2023-04-11 19:18:26 -04:00
if self.data.len() > u16::MAX.into() {
// Currently, the largest sign item would be a Monero transaction
// It provides 4 commitments per input (128 bytes), a 64-byte proof for them, along with a
// key image and proof (96 bytes)
// Even with all of that, we could support 227 inputs in a single TX
// Monero is limited to ~120 inputs per TX
2023-04-11 19:18:26 -04:00
Err(io::Error::new(io::ErrorKind::Other, "signing data exceeded 65535 bytes"))?;
}
writer.write_all(&u16::try_from(self.data.len()).unwrap().to_le_bytes())?;
writer.write_all(&self.data)?;
self.signed.write(writer)
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Transaction {
// Once this completes successfully, no more instances should be created.
DkgCommitments(u32, Vec<u8>, Signed),
DkgShares {
attempt: u32,
sender_i: Participant,
shares: HashMap<Participant, Vec<u8>>,
confirmation_nonces: [u8; 64],
signed: Signed,
},
DkgConfirmed(u32, [u8; 32], Signed),
// When we have synchrony on a batch, we can allow signing it
Batch([u8; 32]),
// When a Serai block is finalized, with the contained batches, we can allow the associated plan
// IDs
SubstrateBlock(u64),
BatchPreprocess(SignData),
BatchShare(SignData),
SignPreprocess(SignData),
SignShare(SignData),
// TODO: We can't make this an Unsigned as we need to prevent spam, which requires a max of 1
// claim per sender
// Can we de-duplicate across senders though, if they claim the same hash completes?
SignCompleted([u8; 32], Vec<u8>, Signed),
}
impl ReadWrite for Transaction {
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0];
reader.read_exact(&mut kind)?;
match kind[0] {
0 => {
let mut attempt = [0; 4];
reader.read_exact(&mut attempt)?;
let attempt = u32::from_le_bytes(attempt);
let commitments = {
let mut commitments_len = [0; 2];
reader.read_exact(&mut commitments_len)?;
let mut commitments = vec![0; usize::from(u16::from_le_bytes(commitments_len))];
reader.read_exact(&mut commitments)?;
commitments
};
let signed = Signed::read(reader)?;
Ok(Transaction::DkgCommitments(attempt, commitments, signed))
}
1 => {
let mut attempt = [0; 4];
reader.read_exact(&mut attempt)?;
let attempt = u32::from_le_bytes(attempt);
let mut sender_i = [0; 2];
reader.read_exact(&mut sender_i)?;
let sender_i = u16::from_le_bytes(sender_i);
let shares = {
let mut share_quantity = [0; 2];
reader.read_exact(&mut share_quantity)?;
2023-04-11 19:18:26 -04:00
let mut share_len = [0; 2];
reader.read_exact(&mut share_len)?;
2023-04-11 19:18:26 -04:00
let share_len = usize::from(u16::from_le_bytes(share_len));
let mut shares = HashMap::new();
for i in 0 .. u16::from_le_bytes(share_quantity) {
let mut participant = Participant::new(i + 1).unwrap();
if u16::from(participant) >= sender_i {
participant = Participant::new(u16::from(participant) + 1).unwrap();
}
let mut share = vec![0; share_len];
reader.read_exact(&mut share)?;
shares.insert(participant, share);
}
shares
};
let mut confirmation_nonces = [0; 64];
reader.read_exact(&mut confirmation_nonces)?;
let signed = Signed::read(reader)?;
Ok(Transaction::DkgShares {
attempt,
sender_i: Participant::new(sender_i)
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid sender participant"))?,
shares,
confirmation_nonces,
signed,
})
}
2 => {
let mut attempt = [0; 4];
reader.read_exact(&mut attempt)?;
let attempt = u32::from_le_bytes(attempt);
let mut confirmation_share = [0; 32];
reader.read_exact(&mut confirmation_share)?;
let signed = Signed::read(reader)?;
Ok(Transaction::DkgConfirmed(attempt, confirmation_share, signed))
}
3 => {
let mut batch = [0; 32];
reader.read_exact(&mut batch)?;
Ok(Transaction::Batch(batch))
}
4 => {
let mut block = [0; 8];
reader.read_exact(&mut block)?;
Ok(Transaction::SubstrateBlock(u64::from_le_bytes(block)))
}
5 => SignData::read(reader).map(Transaction::BatchPreprocess),
6 => SignData::read(reader).map(Transaction::BatchShare),
7 => SignData::read(reader).map(Transaction::SignPreprocess),
8 => SignData::read(reader).map(Transaction::SignShare),
9 => {
let mut plan = [0; 32];
reader.read_exact(&mut plan)?;
let mut tx_len = [0];
reader.read_exact(&mut tx_len)?;
let mut tx = vec![0; usize::from(tx_len[0])];
reader.read_exact(&mut tx)?;
let signed = Signed::read(reader)?;
Ok(Transaction::SignCompleted(plan, tx, signed))
}
_ => Err(io::Error::new(io::ErrorKind::Other, "invalid transaction type")),
}
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
match self {
Transaction::DkgCommitments(attempt, commitments, signed) => {
writer.write_all(&[0])?;
writer.write_all(&attempt.to_le_bytes())?;
2023-04-11 19:18:26 -04:00
if commitments.len() > u16::MAX.into() {
// t commitments and an encryption key mean a u16 is fine until a threshold > 2000 occurs
Err(io::Error::new(io::ErrorKind::Other, "dkg commitments exceeded 65535 bytes"))?;
}
writer.write_all(&u16::try_from(commitments.len()).unwrap().to_le_bytes())?;
writer.write_all(commitments)?;
signed.write(writer)
}
Transaction::DkgShares { attempt, sender_i, shares, confirmation_nonces, signed } => {
writer.write_all(&[1])?;
writer.write_all(&attempt.to_le_bytes())?;
// It's unfortunate to have this so duplicated, yet it avoids needing to pass a Spec to
// read in order to create a valid DkgShares
// TODO: Transform DkgShares to having a Vec of shares, with post-expansion to the proper
// HashMap
writer.write_all(&u16::from(*sender_i).to_le_bytes())?;
2023-04-11 19:18:26 -04:00
// Shares are indexed by non-zero u16s (Participants), so this can't fail
writer.write_all(&u16::try_from(shares.len()).unwrap().to_le_bytes())?;
let mut share_len = None;
let mut found_our_share = false;
for participant in 1 ..= (shares.len() + 1) {
let Some(share) =
&shares.get(&Participant::new(u16::try_from(participant).unwrap()).unwrap())
else {
assert!(!found_our_share);
found_our_share = true;
continue;
};
if let Some(share_len) = share_len {
if share.len() != share_len {
panic!("variable length shares");
}
} else {
2023-04-11 19:18:26 -04:00
// For BLS12-381 G2, this would be:
// - A 32-byte share
// - A 96-byte ephemeral key
// - A 128-byte signature
// Hence why this has to be u16
writer.write_all(&u16::try_from(share.len()).unwrap().to_le_bytes())?;
share_len = Some(share.len());
}
writer.write_all(share)?;
}
writer.write_all(confirmation_nonces)?;
signed.write(writer)
}
Transaction::DkgConfirmed(attempt, share, signed) => {
writer.write_all(&[2])?;
writer.write_all(&attempt.to_le_bytes())?;
writer.write_all(share)?;
signed.write(writer)
}
Transaction::Batch(batch) => {
writer.write_all(&[3])?;
writer.write_all(batch)
}
Transaction::SubstrateBlock(block) => {
writer.write_all(&[4])?;
writer.write_all(&block.to_le_bytes())
}
Transaction::BatchPreprocess(data) => {
writer.write_all(&[5])?;
data.write(writer)
}
Transaction::BatchShare(data) => {
writer.write_all(&[6])?;
data.write(writer)
}
Transaction::SignPreprocess(data) => {
writer.write_all(&[7])?;
data.write(writer)
}
Transaction::SignShare(data) => {
writer.write_all(&[8])?;
data.write(writer)
}
Transaction::SignCompleted(plan, tx, signed) => {
writer.write_all(&[9])?;
writer.write_all(plan)?;
writer.write_all(&[u8::try_from(tx.len()).expect("tx hash length exceed 255 bytes")])?;
writer.write_all(tx)?;
signed.write(writer)
}
}
}
}
impl TransactionTrait for Transaction {
fn kind(&self) -> TransactionKind<'_> {
match self {
Transaction::DkgCommitments(_, _, signed) => TransactionKind::Signed(signed),
Transaction::DkgShares { signed, .. } => TransactionKind::Signed(signed),
Transaction::DkgConfirmed(_, _, signed) => TransactionKind::Signed(signed),
Transaction::Batch(_) => TransactionKind::Provided("batch"),
Transaction::SubstrateBlock(_) => TransactionKind::Provided("serai"),
Transaction::BatchPreprocess(data) => TransactionKind::Signed(&data.signed),
Transaction::BatchShare(data) => TransactionKind::Signed(&data.signed),
Transaction::SignPreprocess(data) => TransactionKind::Signed(&data.signed),
Transaction::SignShare(data) => TransactionKind::Signed(&data.signed),
Transaction::SignCompleted(_, _, signed) => TransactionKind::Signed(signed),
}
}
fn hash(&self) -> [u8; 32] {
let mut tx = self.serialize();
if let TransactionKind::Signed(signed) = self.kind() {
2023-04-11 19:18:26 -04:00
// Make sure the part we're cutting off is the signature
assert_eq!(tx.drain((tx.len() - 64) ..).collect::<Vec<_>>(), signed.signature.serialize());
}
Blake2s256::digest(tx).into()
}
fn verify(&self) -> Result<(), TransactionError> {
if let Transaction::BatchShare(data) = self {
if data.data.len() != 32 {
Err(TransactionError::InvalidContent)?;
}
}
Ok(())
}
}
impl Transaction {
// Used to initially construct transactions so we can then get sig hashes and perform signing
pub fn empty_signed() -> Signed {
Signed {
signer: Ristretto::generator(),
nonce: 0,
signature: SchnorrSignature::<Ristretto> {
R: Ristretto::generator(),
s: <Ristretto as Ciphersuite>::F::ZERO,
},
}
}
// Sign a transaction
pub fn sign<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
genesis: [u8; 32],
key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
nonce: u32,
) {
fn signed(tx: &mut Transaction) -> &mut Signed {
match tx {
Transaction::DkgCommitments(_, _, ref mut signed) => signed,
Transaction::DkgShares { ref mut signed, .. } => signed,
Transaction::DkgConfirmed(_, _, ref mut signed) => signed,
Transaction::Batch(_) => panic!("signing Batch"),
Transaction::SubstrateBlock(_) => panic!("signing SubstrateBlock"),
Transaction::BatchPreprocess(ref mut data) => &mut data.signed,
Transaction::BatchShare(ref mut data) => &mut data.signed,
Transaction::SignPreprocess(ref mut data) => &mut data.signed,
Transaction::SignShare(ref mut data) => &mut data.signed,
Transaction::SignCompleted(_, _, ref mut signed) => signed,
}
}
let signed_ref = signed(self);
signed_ref.signer = Ristretto::generator() * key.deref();
signed_ref.nonce = nonce;
let sig_nonce = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(rng));
signed(self).signature.R = <Ristretto as Ciphersuite>::generator() * sig_nonce.deref();
let sig_hash = self.sig_hash(genesis);
signed(self).signature = SchnorrSignature::<Ristretto>::sign(key, sig_nonce, sig_hash);
}
}