Files
serai/processor/src/coins/monero.rs

178 lines
4.7 KiB
Rust
Raw Normal View History

use std::sync::Arc;
2022-05-26 04:36:19 -04:00
use async_trait::async_trait;
use rand_core::{RngCore, CryptoRng};
2022-05-26 04:36:19 -04:00
2022-06-05 15:10:50 -04:00
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
edwards::CompressedEdwardsY
};
use dalek_ff_group as dfg;
use frost::MultisigKeys;
2022-06-05 15:10:50 -04:00
use monero::{PublicKey, network::Network, util::address::Address};
use monero_serai::{
frost::Ed25519,
transaction::{Timelock, Transaction},
rpc::Rpc,
2022-06-05 15:10:50 -04:00
wallet::{SpendableOutput, SignableTransaction as MSignableTransaction}
};
2022-05-26 04:36:19 -04:00
2022-06-05 15:10:50 -04:00
use crate::{Transcript, Output as OutputTrait, CoinError, Coin, view_key};
2022-05-26 04:36:19 -04:00
#[derive(Clone)]
2022-05-26 04:36:19 -04:00
pub struct Output(SpendableOutput);
impl OutputTrait for Output {
// While we could use (tx, o), using the key ensures we won't be susceptible to the burning bug.
// While the Monero library offers a variant which allows senders to ensure their TXs have unique
// output keys, Serai can still be targeted using the classic burning bug
2022-06-05 06:00:21 -04:00
type Id = [u8; 32];
2022-05-26 04:36:19 -04:00
fn id(&self) -> Self::Id {
2022-06-05 06:00:21 -04:00
self.0.key.compress().to_bytes()
2022-05-26 04:36:19 -04:00
}
fn amount(&self) -> u64 {
self.0.commitment.amount
}
fn serialize(&self) -> Vec<u8> {
self.0.serialize()
}
fn deserialize<R: std::io::Read>(reader: &mut R) -> std::io::Result<Self> {
SpendableOutput::deserialize(reader).map(|o| Output(o))
}
}
impl From<SpendableOutput> for Output {
fn from(output: SpendableOutput) -> Output {
Output(output)
}
}
2022-06-05 15:10:50 -04:00
pub struct SignableTransaction(
Arc<MultisigKeys<Ed25519>>,
Transcript,
usize,
MSignableTransaction
);
pub struct Monero {
rpc: Rpc,
2022-06-05 15:10:50 -04:00
view: Scalar,
view_pub: CompressedEdwardsY
}
2022-05-26 04:36:19 -04:00
impl Monero {
pub fn new(url: String) -> Monero {
2022-06-05 15:10:50 -04:00
let view = view_key::<Monero>(0).0;
Monero {
rpc: Rpc::new(url),
2022-06-05 15:10:50 -04:00
view,
view_pub: (&view * &ED25519_BASEPOINT_TABLE).compress()
}
2022-05-26 04:36:19 -04:00
}
}
#[async_trait]
impl Coin for Monero {
type Curve = Ed25519;
2022-05-26 04:36:19 -04:00
type Output = Output;
type Block = Vec<Transaction>;
type SignableTransaction = SignableTransaction;
2022-05-26 04:36:19 -04:00
type Address = Address;
const ID: &'static [u8] = b"Monero";
const CONFIRMATIONS: usize = 10;
// Testnet TX bb4d188a4c571f2f0de70dca9d475abc19078c10ffa8def26dd4f63ce1bcfd79 uses 146 inputs
// while using less than 100kb of space, albeit with just 2 outputs (though outputs share a BP)
// The TX size limit is half the contextual median block weight, where said weight is >= 300,000
// This means any TX which fits into 150kb will be accepted by Monero
// 128, even with 16 outputs, should fit into 100kb. Further efficiency by 192 may be viable
// TODO: Get hard numbers and tune
const MAX_INPUTS: usize = 128;
const MAX_OUTPUTS: usize = 16;
2022-05-26 04:36:19 -04:00
async fn get_height(&self) -> Result<usize, CoinError> {
self.rpc.get_height().await.map_err(|_| CoinError::ConnectionError)
2022-05-26 04:36:19 -04:00
}
async fn get_block(&self, height: usize) -> Result<Self::Block, CoinError> {
self.rpc.get_block_transactions_possible(height).await.map_err(|_| CoinError::ConnectionError)
}
async fn get_outputs(&self, block: &Self::Block, key: dfg::EdwardsPoint) -> Vec<Self::Output> {
block
.iter()
.flat_map(|tx| {
let (outputs, timelock) = tx.scan(self.view, key.0);
if timelock == Timelock::None {
outputs
} else {
vec![]
}
})
.map(Output::from)
.collect()
2022-05-26 04:36:19 -04:00
}
async fn prepare_send(
2022-05-26 04:36:19 -04:00
&self,
2022-06-05 15:10:50 -04:00
keys: Arc<MultisigKeys<Ed25519>>,
transcript: Transcript,
height: usize,
mut inputs: Vec<Output>,
payments: &[(Address, u64)]
) -> Result<SignableTransaction, CoinError> {
2022-06-05 15:10:50 -04:00
let spend = keys.group_key().0.compress();
Ok(
SignableTransaction(
keys,
transcript,
height,
MSignableTransaction::new(
inputs.drain(..).map(|input| input.0).collect(),
payments.to_vec(),
Address::standard(
Network::Mainnet,
PublicKey { point: spend },
PublicKey { point: self.view_pub }
),
100000000
).map_err(|_| CoinError::ConnectionError)?
)
)
}
async fn attempt_send<R: RngCore + CryptoRng + std::marker::Send>(
&self,
2022-06-05 15:10:50 -04:00
rng: &mut R,
transaction: SignableTransaction,
included: &[u16]
) -> Result<(Vec<u8>, Vec<<Self::Output as OutputTrait>::Id>), CoinError> {
2022-06-05 15:10:50 -04:00
let attempt = transaction.3.clone().multisig(
rng,
&self.rpc,
(*transaction.0).clone(),
transaction.1.clone(),
transaction.2,
included.to_vec()
).await.map_err(|_| CoinError::ConnectionError)?;
/*
let tx = None;
self.rpc.publish_transaction(tx).await.map_err(|_| CoinError::ConnectionError)?;
Ok(
tx.hash().to_vec(),
tx.outputs.iter().map(|output| output.key.compress().to_bytes().collect())
)
*/
Ok((vec![], vec![]))
2022-05-26 04:36:19 -04:00
}
}