Files
serai/crypto/dkg/src/evrf/mod.rs

585 lines
23 KiB
Rust
Raw Normal View History

One Round DKG (#589) * Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++ * Initial eVRF implementation Not quite done yet. It needs to communicate the resulting points and proofs to extract them from the Pedersen Commitments in order to return those, and then be tested. * Add the openings of the PCs to the eVRF as necessary * Add implementation of secq256k1 * Make DKG Encryption a bit more flexible No longer requires the use of an EncryptionKeyMessage, and allows pre-defined keys for encryption. * Make NUM_BITS an argument for the field macro * Have the eVRF take a Zeroizing private key * Initial eVRF-based DKG * Add embedwards25519 curve * Inline the eVRF into the DKG library Due to how we're handling share encryption, we'd either need two circuits or to dedicate this circuit to the DKG. The latter makes sense at this time. * Add documentation to the eVRF-based DKG * Add paragraph claiming robustness * Update to the new eVRF proof * Finish routing the eVRF functionality Still needs errors and serialization, along with a few other TODOs. * Add initial eVRF DKG test * Improve eVRF DKG Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it. * Start using a proper error for the eVRF DKG * Resolve various TODOs Supports recovering multiple key shares from the eVRF DKG. Inlines two loops to save 2**16 iterations. Adds support for creating a constant time representation of scalars < NUM_BITS. * Ban zero ECDH keys, document non-zero requirements * Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519 * Add Ristretto eVRF trait impls * Support participating multiple times in the eVRF DKG * Only participate once per key, not once per key share * Rewrite processor key-gen around the eVRF DKG Still a WIP. * Finish routing the new key gen in the processor Doesn't touch the tests, coordinator, nor Substrate yet. `cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor` does pass. * Deduplicate and better document in processor key_gen * Update serai-processor tests to the new key gen * Correct amount of yx coefficients, get processor key gen test to pass * Add embedded elliptic curve keys to Substrate * Update processor key gen tests to the eVRF DKG * Have set_keys take signature_participants, not removed_participants Now no one is removed from the DKG. Only `t` people publish the key however. Uses a BitVec for an efficient encoding of the participants. * Update the coordinator binary for the new DKG This does not yet update any tests. * Add sensible Debug to key_gen::[Processor, Coordinator]Message * Have the DKG explicitly declare how to interpolate its shares Removes the hack for MuSig where we multiply keys by the inverse of their lagrange interpolation factor. * Replace Interpolation::None with Interpolation::Constant Allows the MuSig DKG to keep the secret share as the original private key, enabling deriving FROST nonces consistently regardless of the MuSig context. * Get coordinator tests to pass * Update spec to the new DKG * Get clippy to pass across the repo * cargo machete * Add an extra sleep to ensure expected ordering of `Participation`s * Update orchestration * Remove bad panic in coordinator It expected ConfirmationShare to be n-of-n, not t-of-n. * Improve documentation on functions * Update TX size limit We now no longer have to support the ridiculous case of having 49 DKG participations within a 101-of-150 DKG. It does remain quite high due to needing to _sign_ so many times. It'd may be optimal for parties with multiple key shares to independently send their preprocesses/shares (despite the overhead that'll cause with signatures and the transaction structure). * Correct error in the Processor spec document * Update a few comments in the validator-sets pallet * Send/Recv Participation one at a time Sending all, then attempting to receive all in an expected order, wasn't working even with notable delays between sending messages. This points to the mempool not working as expected... * Correct ThresholdKeys serialization in modular-frost test * Updating existing TX size limit test for the new DKG parameters * Increase time allowed for the DKG on the GH CI * Correct construction of signature_participants in serai-client tests Fault identified by akil. * Further contextualize DkgConfirmer by ValidatorSet Caught by a safety check we wouldn't reuse preprocesses across messages. That raises the question of we were prior reusing preprocesses (reusing keys)? Except that'd have caused a variety of signing failures (suggesting we had some staggered timing avoiding it in practice but yes, this was possible in theory). * Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests * Correct shimmed setting of a secq256k1 key * cargo fmt * Don't use `[0; 32]` for the embedded keys in the coordinator rotation test The key_gen function expects the random values already decided. * Big-endian secq256k1 scalars Also restores the prior, safer, Encryption::register function.
2024-08-16 11:26:07 -07:00
/*
We implement a DKG using an eVRF, as detailed in the eVRF paper. For the eVRF itself, we do not
use a Paillier-based construction, nor the detailed construction premised on a Bulletproof.
For reference, the detailed construction premised on a Bulletproof involves two curves, notated
here as `C` and `E`, where the scalar field of `C` is the field of `E`. Accordingly, Bulletproofs
over `C` can efficiently perform group operations of points of curve `E`. Each participant has a
private point (`P_i`) on curve `E` committed to over curve `C`. The eVRF selects a pair of
scalars `a, b`, where the participant proves in-Bulletproof the points `A_i, B_i` are
`a * P_i, b * P_i`. The eVRF proceeds to commit to `A_i.x + B_i.x` in a Pedersen Commitment.
Our eVRF uses
[Generalized Bulletproofs](
https://repo.getmonero.org/monero-project/ccs-proposals
/uploads/a9baa50c38c6312efc0fea5c6a188bb9/gbp.pdf
).
This allows us much larger witnesses without growing the reference string, and enables us to
efficiently sample challenges off in-circuit variables (via placing the variables in a vector
commitment, then challenging from a transcript of the commitments). We proceed to use
[elliptic curve divisors](
https://repo.getmonero.org/-/project/54/
uploads/eb1bf5b4d4855a3480c38abf895bd8e8/Veridise_Divisor_Proofs.pdf
)
(which require the ability to sample a challenge off in-circuit variables) to prove discrete
logarithms efficiently.
This is done via having a private scalar (`p_i`) on curve `E`, not a private point, and
publishing the public key for it (`P_i = p_i * G`, where `G` is a generator of `E`). The eVRF
samples two points with unknown discrete logarithms `A, B`, and the circuit proves a Pedersen
Commitment commits to `(p_i * A).x + (p_i * B).x`.
With the eVRF established, we now detail our other novel aspect. The eVRF paper expects secret
shares to be sent to the other parties yet does not detail a precise way to do so. If we
encrypted the secret shares with some stream cipher, each recipient would have to attest validity
or accuse the sender of impropriety. We want an encryption scheme where anyone can verify the
secret shares were encrypted properly, without additional info, efficiently.
Please note from the published commitments, it's possible to calculcate a commitment to the
secret share each party should receive (`V_i`).
We have the sender sample two scalars per recipient, denoted `x_i, y_i` (where `i` is the
recipient index). They perform the eVRF to prove a Pedersen Commitment commits to
`z_i = (x_i * P_i).x + (y_i * P_i).x` and `x_i, y_i` are the discrete logarithms of `X_i, Y_i`
over `G`. They then publish the encrypted share `s_i + z_i` and `X_i, Y_i`.
The recipient is able to decrypt the share via calculating
`s_i - ((p_i * X_i).x + (p_i * Y_i).x)`.
To verify the secret share, we have the `F` terms of the Pedersen Commitments revealed (where
`F, H` are generators of `C`, `F` is used for binding and `H` for blinding). This already needs
to be done for the eVRF outputs used within the DKG, in order to obtain thecommitments to the
coefficients. When we have the commitment `Z_i = ((p_i * A).x + (p_i * B).x) * F`, we simply
check `s_i * F = Z_i + V_i`.
In order to open the Pedersen Commitments to their `F` terms, we transcript the commitments and
the claimed openings, then assign random weights to each pair of `(commitment, opening). The
prover proves knowledge of the discrete logarithm of the sum weighted commitments, minus the sum
sum weighted openings, over `H`.
The benefit to this construction is that given an broadcast channel which is reliable and
ordered, only `t` messages must be broadcast from honest parties in order to create a `t`-of-`n`
multisig. If the encrypted secret shares were not verifiable, one would need at least `t + n`
messages to ensure every participant has a correct dealing and can participate in future
reconstructions of the secret. This would also require all `n` parties be online, whereas this is
robust to threshold `t`.
*/
use core::ops::Deref;
use std::{
io::{self, Read, Write},
collections::{HashSet, HashMap},
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, Zeroizing};
use blake2::{Digest, Blake2s256};
use ciphersuite::{
group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
},
Ciphersuite,
};
use multiexp::multiexp_vartime;
use generalized_bulletproofs::arithmetic_circuit_proof::*;
use ec_divisors::DivisorCurve;
use crate::{Participant, ThresholdParams, Interpolation, ThresholdCore, ThresholdKeys};
pub(crate) mod proof;
use proof::*;
pub use proof::{EvrfCurve, EvrfGenerators};
/// Participation in the DKG.
///
/// `Participation` is meant to be broadcast to all other participants over an authenticated,
/// reliable broadcast channel.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Participation<C: Ciphersuite> {
proof: Vec<u8>,
encrypted_secret_shares: HashMap<Participant, C::F>,
}
impl<C: Ciphersuite> Participation<C> {
pub fn read<R: Read>(reader: &mut R, n: u16) -> io::Result<Self> {
// TODO: Replace `len` with some calculcation deterministic to the params
let mut len = [0; 4];
reader.read_exact(&mut len)?;
let len = usize::try_from(u32::from_le_bytes(len)).expect("<32-bit platform?");
// Don't allocate a buffer for the claimed length
// Read chunks until we reach the claimed length
// This means if we were told to read GB, we must actually be sent GB before allocating as such
const CHUNK_SIZE: usize = 1024;
let mut proof = Vec::with_capacity(len.min(CHUNK_SIZE));
while proof.len() < len {
let next_chunk = (len - proof.len()).min(CHUNK_SIZE);
let old_proof_len = proof.len();
proof.resize(old_proof_len + next_chunk, 0);
reader.read_exact(&mut proof[old_proof_len ..])?;
}
let mut encrypted_secret_shares = HashMap::with_capacity(usize::from(n));
for i in (1 ..= n).map(Participant) {
encrypted_secret_shares.insert(i, C::read_F(reader)?);
}
Ok(Self { proof, encrypted_secret_shares })
}
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&u32::try_from(self.proof.len()).unwrap().to_le_bytes())?;
writer.write_all(&self.proof)?;
for i in (1 ..= u16::try_from(self.encrypted_secret_shares.len())
.expect("writing a Participation which has a n > u16::MAX"))
.map(Participant)
{
writer.write_all(self.encrypted_secret_shares[&i].to_repr().as_ref())?;
}
Ok(())
}
}
fn polynomial<F: PrimeField + Zeroize>(
coefficients: &[Zeroizing<F>],
l: Participant,
) -> Zeroizing<F> {
let l = F::from(u64::from(u16::from(l)));
// This should never be reached since Participant is explicitly non-zero
assert!(l != F::ZERO, "zero participant passed to polynomial");
let mut share = Zeroizing::new(F::ZERO);
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
*share += coefficient.deref();
if idx != (coefficients.len() - 1) {
*share *= l;
}
}
share
}
#[allow(clippy::type_complexity)]
fn share_verification_statements<C: Ciphersuite>(
rng: &mut (impl RngCore + CryptoRng),
commitments: &[C::G],
n: u16,
encryption_commitments: &[C::G],
encrypted_secret_shares: &HashMap<Participant, C::F>,
) -> (C::F, Vec<(C::F, C::G)>) {
debug_assert_eq!(usize::from(n), encryption_commitments.len());
debug_assert_eq!(usize::from(n), encrypted_secret_shares.len());
let mut g_scalar = C::F::ZERO;
let mut pairs = Vec::with_capacity(commitments.len() + encryption_commitments.len());
for commitment in commitments {
pairs.push((C::F::ZERO, *commitment));
}
let mut weight;
for (i, enc_share) in encrypted_secret_shares {
let enc_commitment = encryption_commitments[usize::from(u16::from(*i)) - 1];
weight = C::F::random(&mut *rng);
// s_i F
g_scalar += weight * enc_share;
// - Z_i
let weight = -weight;
pairs.push((weight, enc_commitment));
// - V_i
{
let i = C::F::from(u64::from(u16::from(*i)));
// The first `commitments.len()` pairs are for the commitments
(0 .. commitments.len()).fold(weight, |exp, j| {
pairs[j].0 += exp;
exp * i
});
}
}
(g_scalar, pairs)
}
/// Errors from the eVRF DKG.
#[derive(Clone, PartialEq, Eq, Debug, thiserror::Error)]
pub enum EvrfError {
#[error("n, the amount of participants, exceeded a u16")]
TooManyParticipants,
#[error("the threshold t wasn't in range 1 <= t <= n")]
InvalidThreshold,
#[error("a public key was the identity point")]
PublicKeyWasIdentity,
#[error("participating in a DKG we aren't a participant in")]
NotAParticipant,
#[error("a participant with an unrecognized ID participated")]
NonExistentParticipant,
#[error("the passed in generators did not have enough generators for this DKG")]
NotEnoughGenerators,
}
/// The result of calling EvrfDkg::verify.
pub enum VerifyResult<C: EvrfCurve> {
Valid(EvrfDkg<C>),
Invalid(Vec<Participant>),
NotEnoughParticipants,
}
/// Struct to perform/verify the DKG with.
#[derive(Debug)]
pub struct EvrfDkg<C: EvrfCurve> {
t: u16,
n: u16,
evrf_public_keys: Vec<<C::EmbeddedCurve as Ciphersuite>::G>,
group_key: C::G,
verification_shares: HashMap<Participant, C::G>,
#[allow(clippy::type_complexity)]
encrypted_secret_shares:
HashMap<Participant, HashMap<Participant, ([<C::EmbeddedCurve as Ciphersuite>::G; 2], C::F)>>,
}
impl<C: EvrfCurve> EvrfDkg<C> {
// Form the initial transcript for the proofs.
fn initial_transcript(
invocation: [u8; 32],
evrf_public_keys: &[<C::EmbeddedCurve as Ciphersuite>::G],
t: u16,
) -> [u8; 32] {
let mut transcript = Blake2s256::new();
transcript.update(invocation);
for key in evrf_public_keys {
transcript.update(key.to_bytes().as_ref());
}
transcript.update(t.to_le_bytes());
transcript.finalize().into()
}
/// Participate in performing the DKG for the specified parameters.
///
/// The context MUST be unique across invocations. Reuse of context will lead to sharing
/// prior-shared secrets.
///
/// Public keys are not allowed to be the identity point. This will error if any are.
pub fn participate(
rng: &mut (impl RngCore + CryptoRng),
generators: &EvrfGenerators<C>,
context: [u8; 32],
t: u16,
evrf_public_keys: &[<C::EmbeddedCurve as Ciphersuite>::G],
evrf_private_key: &Zeroizing<<C::EmbeddedCurve as Ciphersuite>::F>,
) -> Result<Participation<C>, EvrfError> {
let Ok(n) = u16::try_from(evrf_public_keys.len()) else { Err(EvrfError::TooManyParticipants)? };
if (t == 0) || (t > n) {
Err(EvrfError::InvalidThreshold)?;
}
if evrf_public_keys.iter().any(|key| bool::from(key.is_identity())) {
Err(EvrfError::PublicKeyWasIdentity)?;
};
let evrf_public_key = <C::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref();
if !evrf_public_keys.iter().any(|key| *key == evrf_public_key) {
Err(EvrfError::NotAParticipant)?;
};
let transcript = Self::initial_transcript(context, evrf_public_keys, t);
// Further bind to the participant index so each index gets unique generators
// This allows reusing eVRF public keys as the prover
let mut per_proof_transcript = Blake2s256::new();
per_proof_transcript.update(transcript);
per_proof_transcript.update(evrf_public_key.to_bytes());
// The above transcript is expected to be binding to all arguments here
// The generators are constant to this ciphersuite's generator, and the parameters are
// transcripted
let EvrfProveResult { coefficients, encryption_masks, proof } = match Evrf::prove(
rng,
&generators.0,
per_proof_transcript.finalize().into(),
usize::from(t),
evrf_public_keys,
evrf_private_key,
) {
Ok(res) => res,
Err(AcError::NotEnoughGenerators) => Err(EvrfError::NotEnoughGenerators)?,
Err(
AcError::DifferingLrLengths |
AcError::InconsistentAmountOfConstraints |
AcError::ConstrainedNonExistentTerm |
AcError::ConstrainedNonExistentCommitment |
AcError::InconsistentWitness |
AcError::Ip(_) |
AcError::IncompleteProof,
) => {
panic!("failed to prove for the eVRF proof")
}
};
let mut encrypted_secret_shares = HashMap::with_capacity(usize::from(n));
for (l, encryption_mask) in (1 ..= n).map(Participant).zip(encryption_masks) {
let share = polynomial::<C::F>(&coefficients, l);
encrypted_secret_shares.insert(l, *share + *encryption_mask);
}
Ok(Participation { proof, encrypted_secret_shares })
}
/// Check if a batch of `Participation`s are valid.
///
/// If any `Participation` is invalid, the list of all invalid participants will be returned.
/// If all `Participation`s are valid and there's at least `t`, an instance of this struct
/// (usable to obtain a threshold share of generated key) is returned. If all are valid and
/// there's not at least `t`, `VerifyResult::NotEnoughParticipants` is returned.
///
/// This DKG is unbiased if all `n` people participate. This DKG is biased if only a threshold
/// participate.
pub fn verify(
rng: &mut (impl RngCore + CryptoRng),
generators: &EvrfGenerators<C>,
context: [u8; 32],
t: u16,
evrf_public_keys: &[<C::EmbeddedCurve as Ciphersuite>::G],
participations: &HashMap<Participant, Participation<C>>,
) -> Result<VerifyResult<C>, EvrfError> {
let Ok(n) = u16::try_from(evrf_public_keys.len()) else { Err(EvrfError::TooManyParticipants)? };
if (t == 0) || (t > n) {
Err(EvrfError::InvalidThreshold)?;
}
if evrf_public_keys.iter().any(|key| bool::from(key.is_identity())) {
Err(EvrfError::PublicKeyWasIdentity)?;
};
for i in participations.keys() {
if u16::from(*i) > n {
Err(EvrfError::NonExistentParticipant)?;
}
}
let mut valid = HashMap::with_capacity(participations.len());
let mut faulty = HashSet::new();
let transcript = Self::initial_transcript(context, evrf_public_keys, t);
let mut evrf_verifier = generators.0.batch_verifier();
for (i, participation) in participations {
let evrf_public_key = evrf_public_keys[usize::from(u16::from(*i)) - 1];
let mut per_proof_transcript = Blake2s256::new();
per_proof_transcript.update(transcript);
per_proof_transcript.update(evrf_public_key.to_bytes());
// Clone the verifier so if this proof is faulty, it doesn't corrupt the verifier
let mut verifier_clone = evrf_verifier.clone();
let Ok(data) = Evrf::<C>::verify(
rng,
&generators.0,
&mut verifier_clone,
per_proof_transcript.finalize().into(),
usize::from(t),
evrf_public_keys,
evrf_public_key,
&participation.proof,
) else {
faulty.insert(*i);
continue;
};
evrf_verifier = verifier_clone;
valid.insert(*i, (participation.encrypted_secret_shares.clone(), data));
}
debug_assert_eq!(valid.len() + faulty.len(), participations.len());
// Perform the batch verification of the eVRFs
if !generators.0.verify(evrf_verifier) {
// If the batch failed, verify them each individually
for (i, participation) in participations {
if faulty.contains(i) {
continue;
}
let mut evrf_verifier = generators.0.batch_verifier();
Evrf::<C>::verify(
rng,
&generators.0,
&mut evrf_verifier,
context,
usize::from(t),
evrf_public_keys,
evrf_public_keys[usize::from(u16::from(*i)) - 1],
&participation.proof,
)
.expect("evrf failed basic checks yet prover wasn't prior marked faulty");
if !generators.0.verify(evrf_verifier) {
valid.remove(i);
faulty.insert(*i);
}
}
}
debug_assert_eq!(valid.len() + faulty.len(), participations.len());
// Perform the batch verification of the shares
let mut sum_encrypted_secret_shares = HashMap::with_capacity(usize::from(n));
let mut sum_masks = HashMap::with_capacity(usize::from(n));
let mut all_encrypted_secret_shares = HashMap::with_capacity(usize::from(t));
{
let mut share_verification_statements_actual = HashMap::with_capacity(valid.len());
if !{
let mut g_scalar = C::F::ZERO;
let mut pairs = Vec::with_capacity(valid.len() * (usize::from(t) + evrf_public_keys.len()));
for (i, (encrypted_secret_shares, data)) in &valid {
let (this_g_scalar, mut these_pairs) = share_verification_statements::<C>(
&mut *rng,
&data.coefficients,
evrf_public_keys
.len()
.try_into()
.expect("n prior checked to be <= u16::MAX couldn't be converted to a u16"),
&data.encryption_commitments,
encrypted_secret_shares,
);
// Queue this into our batch
g_scalar += this_g_scalar;
pairs.extend(&these_pairs);
// Also push this g_scalar onto these_pairs so these_pairs can be verified individually
// upon error
these_pairs.push((this_g_scalar, generators.0.g()));
share_verification_statements_actual.insert(*i, these_pairs);
// Also format this data as we'd need it upon success
let mut formatted_encrypted_secret_shares = HashMap::with_capacity(usize::from(n));
for (j, enc_share) in encrypted_secret_shares {
/*
We calculcate verification shares as the sum of the encrypted scalars, minus their
masks. This only does one scalar multiplication, and `1+t` point additions (with
one negation), and is accordingly much cheaper than interpolating the commitments.
This is only possible because already interpolated the commitments to verify the
encrypted secret share.
*/
let sum_encrypted_secret_share =
sum_encrypted_secret_shares.get(j).copied().unwrap_or(C::F::ZERO);
let sum_mask = sum_masks.get(j).copied().unwrap_or(C::G::identity());
sum_encrypted_secret_shares.insert(*j, sum_encrypted_secret_share + enc_share);
let j_index = usize::from(u16::from(*j)) - 1;
sum_masks.insert(*j, sum_mask + data.encryption_commitments[j_index]);
formatted_encrypted_secret_shares.insert(*j, (data.ecdh_keys[j_index], *enc_share));
}
all_encrypted_secret_shares.insert(*i, formatted_encrypted_secret_shares);
}
pairs.push((g_scalar, generators.0.g()));
bool::from(multiexp_vartime(&pairs).is_identity())
} {
// If the batch failed, verify them each individually
for (i, pairs) in share_verification_statements_actual {
if !bool::from(multiexp_vartime(&pairs).is_identity()) {
valid.remove(&i);
faulty.insert(i);
}
}
}
}
debug_assert_eq!(valid.len() + faulty.len(), participations.len());
let mut faulty = faulty.into_iter().collect::<Vec<_>>();
if !faulty.is_empty() {
faulty.sort_unstable();
return Ok(VerifyResult::Invalid(faulty));
}
// We check at least t key shares of people have participated in contributing entropy
// Since the key shares of the participants exceed t, meaning if they're malicious they can
// reconstruct the key regardless, this is safe to the threshold
{
let mut participating_weight = 0;
let mut evrf_public_keys_mut = evrf_public_keys.to_vec();
for i in valid.keys() {
let evrf_public_key = evrf_public_keys[usize::from(u16::from(*i)) - 1];
// Remove this key from the Vec to prevent double-counting
/*
Double-counting would be a risk if multiple participants shared an eVRF public key and
participated. This code does still allow such participants (in order to let participants
be weighted), and any one of them participating will count as all participating. This is
fine as any one such participant will be able to decrypt the shares for themselves and
all other participants, so this is still a key generated by an amount of participants who
could simply reconstruct the key.
*/
let start_len = evrf_public_keys_mut.len();
evrf_public_keys_mut.retain(|key| *key != evrf_public_key);
let end_len = evrf_public_keys_mut.len();
let count = start_len - end_len;
participating_weight += count;
}
if participating_weight < usize::from(t) {
return Ok(VerifyResult::NotEnoughParticipants);
}
}
// If we now have >= t participations, calculate the group key and verification shares
// The group key is the sum of the zero coefficients
let group_key = valid.values().map(|(_, evrf_data)| evrf_data.coefficients[0]).sum::<C::G>();
// Calculate each user's verification share
let mut verification_shares = HashMap::with_capacity(usize::from(n));
for i in (1 ..= n).map(Participant) {
verification_shares
.insert(i, (C::generator() * sum_encrypted_secret_shares[&i]) - sum_masks[&i]);
}
Ok(VerifyResult::Valid(EvrfDkg {
t,
n,
evrf_public_keys: evrf_public_keys.to_vec(),
group_key,
verification_shares,
encrypted_secret_shares: all_encrypted_secret_shares,
}))
}
pub fn keys(
&self,
evrf_private_key: &Zeroizing<<C::EmbeddedCurve as Ciphersuite>::F>,
) -> Vec<ThresholdKeys<C>> {
let evrf_public_key = <C::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref();
let mut is = Vec::with_capacity(1);
for (i, evrf_key) in self.evrf_public_keys.iter().enumerate() {
if *evrf_key == evrf_public_key {
let i = u16::try_from(i).expect("n <= u16::MAX yet i > u16::MAX?");
let i = Participant(1 + i);
is.push(i);
}
}
let mut res = Vec::with_capacity(is.len());
for i in is {
let mut secret_share = Zeroizing::new(C::F::ZERO);
for shares in self.encrypted_secret_shares.values() {
let (ecdh_keys, enc_share) = shares[&i];
let mut ecdh = Zeroizing::new(C::F::ZERO);
for point in ecdh_keys {
let (mut x, mut y) =
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(point * evrf_private_key.deref()).unwrap();
*ecdh += x;
x.zeroize();
y.zeroize();
}
*secret_share += enc_share - ecdh.deref();
}
debug_assert_eq!(self.verification_shares[&i], C::generator() * secret_share.deref());
res.push(ThresholdKeys::from(ThresholdCore {
params: ThresholdParams::new(self.t, self.n, i).unwrap(),
interpolation: Interpolation::Lagrange,
secret_share,
group_key: self.group_key,
verification_shares: self.verification_shares.clone(),
}));
}
res
}
}