Files
serai/crypto/schnorr/src/aggregate.rs

160 lines
4.8 KiB
Rust
Raw Normal View History

use std::io::{self, Read, Write};
use zeroize::Zeroize;
use transcript::{Transcript, SecureDigest, DigestTranscript};
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use multiexp::multiexp_vartime;
use ciphersuite::Ciphersuite;
use crate::SchnorrSignature;
// Performs a big-endian modular reduction of the hash value
// This is used by the below aggregator to prevent mutability
// Only an 128-bit scalar is needed to offer 128-bits of security against malleability per
// https://cr.yp.to/badbatch/badbatch-20120919.pdf
// Accordingly, while a 256-bit hash used here with a 256-bit ECC will have bias, it shouldn't be
// an issue
fn scalar_from_digest<D: Clone + SecureDigest, F: PrimeField>(
digest: &mut DigestTranscript<D>,
) -> F {
let bytes = digest.challenge(b"aggregation_weight");
debug_assert_eq!(bytes.len() % 8, 0);
let mut res = F::zero();
let mut i = 0;
while i < bytes.len() {
if i != 0 {
for _ in 0 .. 8 {
res += res;
}
}
res += F::from(u64::from_be_bytes(bytes[i .. (i + 8)].try_into().unwrap()));
i += 8;
}
res
}
2022-12-08 22:10:12 -05:00
/// Aggregate Schnorr signature as defined in <https://eprint.iacr.org/2021/350>.
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct SchnorrAggregate<C: Ciphersuite> {
pub Rs: Vec<C::G>,
pub s: C::F,
}
impl<C: Ciphersuite> SchnorrAggregate<C> {
/// Read a SchnorrAggregate from something implementing Read.
pub fn read<R: Read>(reader: &mut R) -> io::Result<Self> {
let mut len = [0; 4];
reader.read_exact(&mut len)?;
#[allow(non_snake_case)]
let mut Rs = vec![];
for _ in 0 .. u32::from_le_bytes(len) {
Rs.push(C::read_G(reader)?);
}
Ok(SchnorrAggregate { Rs, s: C::read_F(reader)? })
}
/// Write a SchnorrAggregate to something implementing Write.
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(
&u32::try_from(self.Rs.len())
.expect("more than 4 billion signatures in aggregate")
.to_le_bytes(),
)?;
#[allow(non_snake_case)]
for R in &self.Rs {
writer.write_all(R.to_bytes().as_ref())?;
}
writer.write_all(self.s.to_repr().as_ref())
}
/// Serialize a SchnorrAggregate, returning a Vec<u8>.
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
/// Perform signature verification.
///
/// Challenges must be properly crafted, which means being binding to the public key, nonce, and
/// any message. Failure to do so will let a malicious adversary to forge signatures for
/// different keys/messages.
///
/// The DST used here must prevent a collision with whatever hash function produced the
/// challenges.
#[must_use]
pub fn verify<D: Clone + SecureDigest>(
&self,
dst: &'static [u8],
keys_and_challenges: &[(C::G, C::F)],
) -> bool {
if self.Rs.len() != keys_and_challenges.len() {
return false;
}
let mut digest = DigestTranscript::<D>::new(dst);
digest.domain_separate(b"signatures");
for (_, challenge) in keys_and_challenges {
digest.append_message(b"challenge", challenge.to_repr());
}
let mut pairs = Vec::with_capacity((2 * keys_and_challenges.len()) + 1);
for (i, (key, challenge)) in keys_and_challenges.iter().enumerate() {
let z = scalar_from_digest(&mut digest);
pairs.push((z, self.Rs[i]));
pairs.push((z * challenge, *key));
}
pairs.push((-self.s, C::generator()));
multiexp_vartime(&pairs).is_identity().into()
}
}
#[allow(non_snake_case)]
#[derive(Clone, Debug, Zeroize)]
pub struct SchnorrAggregator<D: Clone + SecureDigest, C: Ciphersuite> {
digest: DigestTranscript<D>,
sigs: Vec<SchnorrSignature<C>>,
}
impl<D: Clone + SecureDigest, C: Ciphersuite> SchnorrAggregator<D, C> {
/// Create a new aggregator.
///
/// The DST used here must prevent a collision with whatever hash function produced the
/// challenges.
pub fn new(dst: &'static [u8]) -> Self {
let mut res = Self { digest: DigestTranscript::<D>::new(dst), sigs: vec![] };
res.digest.domain_separate(b"signatures");
res
}
/// Aggregate a signature.
pub fn aggregate(&mut self, challenge: C::F, sig: SchnorrSignature<C>) {
self.digest.append_message(b"challenge", challenge.to_repr());
self.sigs.push(sig);
}
/// Complete aggregation, returning None if none were aggregated.
pub fn complete(mut self) -> Option<SchnorrAggregate<C>> {
if self.sigs.is_empty() {
return None;
}
let mut aggregate =
SchnorrAggregate { Rs: Vec::with_capacity(self.sigs.len()), s: C::F::zero() };
for i in 0 .. self.sigs.len() {
aggregate.Rs.push(self.sigs[i].R);
aggregate.s += self.sigs[i].s * scalar_from_digest::<_, C::F>(&mut self.digest);
}
Some(aggregate)
}
}