Files
serai/coins/monero/src/ringct/bulletproofs/core.rs

311 lines
8.3 KiB
Rust
Raw Normal View History

// Required to be for this entire file, which isn't an issue, as it wouldn't bind to the static
#![allow(non_upper_case_globals)]
use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
use group::{ff::Field, Group};
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp;
use crate::{
H as DALEK_H, Commitment, random_scalar as dalek_random, hash, hash_to_scalar as dalek_hash,
ringct::{hash_to_point::raw_hash_to_point, bulletproofs::scalar_vector::*},
serialize::write_varint,
};
// Bring things into ff/group
lazy_static! {
static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap();
static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H);
}
fn random_scalar<R: RngCore + CryptoRng>(rng: &mut R) -> Scalar {
Scalar(dalek_random(rng))
}
fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar(dalek_hash(data))
}
// Components common between variants
pub(crate) const MAX_M: usize = 16;
const N: usize = 64;
const MAX_MN: usize = MAX_M * N;
lazy_static! {
static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); N]);
static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), N);
static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N);
}
struct Generators {
G: Vec<EdwardsPoint>,
H: Vec<EdwardsPoint>,
}
fn generators_core(prefix: &'static [u8]) -> Generators {
let mut res = Generators { G: Vec::with_capacity(MAX_MN), H: Vec::with_capacity(MAX_MN) };
for i in 0 .. MAX_MN {
let i = 2 * i;
let mut even = (*H).compress().to_bytes().to_vec();
even.extend(prefix);
let mut odd = even.clone();
write_varint(&i.try_into().unwrap(), &mut even).unwrap();
write_varint(&(i + 1).try_into().unwrap(), &mut odd).unwrap();
res.H.push(EdwardsPoint(raw_hash_to_point(hash(&even))));
res.G.push(EdwardsPoint(raw_hash_to_point(hash(&odd))));
}
res
}
fn vector_exponent(generators: &Generators, a: &ScalarVector, b: &ScalarVector) -> EdwardsPoint {
debug_assert_eq!(a.len(), b.len());
(a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()])
}
fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
let slice =
&[cache.to_bytes().as_ref(), mash.iter().cloned().flatten().collect::<Vec<_>>().as_ref()]
.concat();
*cache = hash_to_scalar(slice);
*cache
}
fn MN(outputs: usize) -> (usize, usize, usize) {
let logN = 6;
debug_assert_eq!(N, 1 << logN);
let mut logM = 0;
let mut M;
while {
M = 1 << logM;
(M <= MAX_M) && (M < outputs)
} {
logM += 1;
}
(logM + logN, M, M * N)
}
fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
let (_, M, MN) = MN(commitments.len());
let sv = ScalarVector(commitments.iter().cloned().map(|c| Scalar::from(c.amount)).collect());
let mut aL = ScalarVector::new(MN);
let mut aR = ScalarVector::new(MN);
for j in 0 .. M {
for i in (0 .. N).rev() {
if (j < sv.len()) && ((sv[j][i / 8] & (1u8 << (i % 8))) != 0) {
aL.0[(j * N) + i] = Scalar::one();
} else {
aR.0[(j * N) + i] = -Scalar::one();
}
}
}
(aL, aR)
}
fn hash_commitments(commitments: &[Commitment]) -> Scalar {
let V = commitments.iter().map(|c| EdwardsPoint(c.calculate()) * *INV_EIGHT).collect::<Vec<_>>();
hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>())
}
fn alpha<R: RngCore + CryptoRng>(
rng: &mut R,
generators: &Generators,
aL: &ScalarVector,
aR: &ScalarVector,
) -> (Scalar, EdwardsPoint) {
let alpha = random_scalar(&mut *rng);
(alpha, (vector_exponent(generators, aL, aR) + (EdwardsPoint::generator() * alpha)) * *INV_EIGHT)
}
// Bulletproofs-specific
lazy_static! {
static ref GENERATORS: Generators = generators_core(b"bulletproof");
}
// Bulletproofs+-specific
lazy_static! {
static ref GENERATORS_PLUS: Generators = generators_core(b"bulletproof_plus");
static ref TRANSCRIPT_PLUS: EdwardsPoint =
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript")));
}
fn even_powers_sum(x: Scalar, pow: usize) -> Scalar {
debug_assert!(pow != 0);
// Verify pow is a power of two
debug_assert_eq!(((pow - 1) & pow), 0);
let xsq = x * x;
let mut res = xsq;
let mut prev = 2;
while prev < pow {
res += res * xsq;
prev += 2;
}
res
}
// Types for all Bulletproofs
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Bulletproofs {
Original {
A: DalekPoint,
S: DalekPoint,
T1: DalekPoint,
T2: DalekPoint,
taux: DalekScalar,
mu: DalekScalar,
L: Vec<DalekPoint>,
R: Vec<DalekPoint>,
a: DalekScalar,
b: DalekScalar,
t: DalekScalar,
},
}
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> Bulletproofs {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let mut cache = hash_commitments(commitments);
let (alpha, A) = alpha(rng, &GENERATORS, &aL, &aR);
let (sL, sR) =
ScalarVector((0 .. (MN * 2)).map(|_| random_scalar(&mut *rng)).collect::<Vec<_>>()).split();
let rho = random_scalar(&mut *rng);
let S = (vector_exponent(&GENERATORS, &sL, &sR) + (EdwardsPoint::generator() * rho)) * *INV_EIGHT;
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let l0 = &aL - z;
let l1 = sL;
let mut zero_twos = Vec::with_capacity(MN);
let zpow = ScalarVector::powers(z, M + 2);
for j in 0 .. M {
for i in 0 .. N {
zero_twos.push(zpow[j + 2] * TWO_N[i]);
}
}
let yMN = ScalarVector::powers(y, MN);
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
let r1 = yMN * sR;
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
let t2 = inner_product(&l1, &r1);
let tau1 = random_scalar(&mut *rng);
let tau2 = random_scalar(&mut *rng);
let T1 = multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]) * *INV_EIGHT;
let T2 = multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]) * *INV_EIGHT;
let x =
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
let gamma = ScalarVector(commitments.iter().cloned().map(|c| Scalar(c.mask)).collect());
let mut taux = (tau2 * (x * x)) + (tau1 * x);
for i in 1 ..= gamma.len() {
taux += zpow[i + 1] * gamma[i - 1];
}
let mu = (x * rho) + alpha;
let l = &l0 + &(l1 * x);
let r = &r0 + &(r1 * x);
let t = inner_product(&l, &r);
let x_ip = hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
let mut a = l;
let mut b = r;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
let U = *H * x_ip;
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = inner_product(&aL, &bR);
let cR = inner_product(&aR, &bL);
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let mut L_i_s = aL
.0
.iter()
.cloned()
.zip(G_R.iter().cloned())
.chain(bR.0.iter().cloned().zip(H_L.iter().cloned()))
.collect::<Vec<_>>();
L_i_s.push((cL, U));
let L_i = multiexp(&L_i_s) * *INV_EIGHT;
let mut R_i_s = aR
.0
.iter()
.cloned()
.zip(G_L.iter().cloned())
.chain(bL.0.iter().cloned().zip(H_R.iter().cloned()))
.collect::<Vec<_>>();
R_i_s.push((cR, U));
let R_i = multiexp(&R_i_s) * *INV_EIGHT;
L.push(L_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
a = (aL * w) + (aR * winv);
b = (bL * winv) + (bR * w);
if a.len() != 1 {
G_proof = hadamard_fold(G_L, G_R, winv, w);
H_proof = hadamard_fold(H_L, H_R, w, winv);
}
}
Bulletproofs::Original {
A: *A,
S: *S,
T1: *T1,
T2: *T2,
taux: *taux,
mu: *mu,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
a: *a[0],
b: *b[0],
t: *t,
}
}