Files
serai/crypto/frost/src/curve/kp256.rs

157 lines
5.0 KiB
Rust
Raw Normal View History

use core::convert::AsRef;
use sha2::{digest::Digest, Sha256};
use ciphersuite::{
group::{
ff::{Field, PrimeField},
GroupEncoding,
},
Ciphersuite,
};
use elliptic_curve::{
zeroize::Zeroize,
generic_array::{typenum::U32, GenericArray},
bigint::{NonZero, CheckedAdd, Encoding, U384},
hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
};
use crate::{curve::Curve, algorithm::Hram};
#[allow(non_snake_case)]
fn hash_to_F<C: Ciphersuite<F: PrimeField<Repr = GenericArray<u8, U32>>>>(
dst: &[u8],
msg: &[u8],
) -> C::F {
// While one of these two libraries does support directly hashing to the Scalar field, the
// other doesn't. While that's probably an oversight, this is a universally working method
// This method is from
// https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html
// Specifically, Section 5
// While that draft, overall, is intended for hashing to curves, that necessitates
// detailing how to hash to a finite field. The draft comments that its mechanism for
// doing so, which it uses to derive field elements, is also applicable to the scalar field
// The hash_to_field function is intended to provide unbiased values
// In order to do so, a wide reduction from an extra k bits is applied, minimizing bias to
// 2^-k
// k is intended to be the bits of security of the suite, which is 128 for secp256k1 and
// P-256
const K: usize = 128;
// L is the amount of bytes of material which should be used in the wide reduction
// The 256 is for the bit-length of the primes, rounded up to the nearest byte threshold
// This is a simplification of the formula from the end of section 5
const L: usize = (256 + K) / 8; // 48
// In order to perform this reduction, we need to use 48-byte numbers
// First, convert the modulus to a 48-byte number
// This is done by getting -1 as bytes, parsing it into a U384, and then adding back one
let mut modulus = [0; L];
// The byte repr of scalars will be 32 big-endian bytes
// Set the lower 32 bytes of our 48-byte array accordingly
modulus[16 ..].copy_from_slice(&(C::F::ZERO - C::F::ONE).to_repr());
// Use a checked_add + unwrap since this addition cannot fail (being a 32-byte value with
// 48-bytes of space)
// While a non-panicking saturating_add/wrapping_add could be used, they'd likely be less
// performant
let modulus = U384::from_be_slice(&modulus).checked_add(&U384::ONE).unwrap();
// The defined P-256 and secp256k1 ciphersuites both use expand_message_xmd
let mut wide = U384::from_be_bytes({
let mut bytes = [0; 48];
ExpandMsgXmd::<Sha256>::expand_message(&[msg], &[dst], 48).unwrap().fill_bytes(&mut bytes);
bytes
})
.rem(&NonZero::new(modulus).unwrap())
.to_be_bytes();
// Now that this has been reduced back to a 32-byte value, grab the lower 32-bytes
let mut array = *GenericArray::from_slice(&wide[16 ..]);
let res = C::F::from_repr(array).unwrap();
// Zeroize the temp values we can due to the possibility `hash_to_F` is being used for
// nonces
wide.zeroize();
array.zeroize();
res
}
macro_rules! kp_curve {
(
2022-09-29 06:02:43 -04:00
$feature: literal,
$Curve: ident,
$Hram: ident,
$CONTEXT: literal
) => {
pub use ciphersuite_kp256::$Curve;
2022-08-26 05:59:43 -04:00
impl Curve for $Curve {
const CONTEXT: &'static [u8] = $CONTEXT;
// These ciphersuites define their hash as SHA-512, yet FROST uses SHA-256
fn hash(dst: &[u8], data: &[u8]) -> impl AsRef<[u8]> {
sha2::Sha256::digest([Self::CONTEXT, dst, data].concat())
}
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
let dst = [Self::CONTEXT, dst].concat();
let dst = dst.as_slice();
hash_to_F::<Self>(dst, msg)
}
}
2023-03-20 20:10:00 -04:00
/// The challenge function for this ciphersuite.
#[derive(Clone)]
pub struct $Hram;
impl Hram<$Curve> for $Hram {
#[allow(non_snake_case)]
fn hram(
R: &<$Curve as Ciphersuite>::G,
A: &<$Curve as Ciphersuite>::G,
m: &[u8],
) -> <$Curve as Ciphersuite>::F {
<$Curve as Curve>::hash_to_F(
b"chal",
&[R.to_bytes().as_ref(), A.to_bytes().as_ref(), m].concat(),
)
}
}
2022-07-15 01:26:07 -04:00
};
}
#[cfg(feature = "p256")]
2023-07-19 15:47:30 -04:00
kp_curve!("p256", P256, IetfP256Hram, b"FROST-P256-SHA256-v1");
#[cfg(feature = "secp256k1")]
2023-07-19 15:47:30 -04:00
kp_curve!("secp256k1", Secp256k1, IetfSecp256k1Hram, b"FROST-secp256k1-SHA256-v1");
#[cfg(test)]
fn test_oversize_dst<C: Ciphersuite<F: PrimeField<Repr = GenericArray<u8, U32>>>>() {
use sha2::Digest;
// The draft specifies DSTs >255 bytes should be hashed into a 32-byte DST
let oversize_dst = [0x00; 256];
let actual_dst = Sha256::digest([b"H2C-OVERSIZE-DST-".as_slice(), &oversize_dst].concat());
// Test the hash_to_F function handles this
// If it didn't, these would return different values
assert_eq!(hash_to_F::<C>(&oversize_dst, &[]), hash_to_F::<C>(&actual_dst, &[]));
}
#[cfg(feature = "secp256k1")]
#[test]
fn test_secp256k1() {
test_oversize_dst::<Secp256k1>();
}
#[cfg(feature = "p256")]
#[test]
fn test_p256() {
test_oversize_dst::<P256>();
}