Files
serai/coordinator/src/substrate/db.rs

62 lines
1.6 KiB
Rust
Raw Normal View History

use scale::Encode;
2023-04-20 05:04:08 -04:00
use serai_client::{
primitives::NetworkId,
validator_sets::primitives::{Session, ValidatorSet},
};
pub use serai_db::*;
create_db!(
SubstrateDb {
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 16:57:21 -05:00
CosignTriggered: () -> (),
IntendedCosign: () -> (u64, Option<u64>),
BlockHasEvents: (block: u64) -> u8,
LatestCosignedBlock: () -> u64,
NextBlock: () -> u64,
EventDb: (id: &[u8], index: u32) -> (),
BatchInstructionsHashDb: (network: NetworkId, id: u32) -> [u8; 32]
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 16:57:21 -05:00
}
);
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 16:57:21 -05:00
impl IntendedCosign {
pub fn set_intended_cosign(txn: &mut impl DbTxn, intended: u64) {
Self::set(txn, &(intended, None::<u64>));
}
pub fn set_skipped_cosign(txn: &mut impl DbTxn, skipped: u64) {
let (intended, prior_skipped) = Self::get(txn).unwrap();
assert!(prior_skipped.is_none());
Self::set(txn, &(intended, Some(skipped)));
}
}
impl LatestCosignedBlock {
pub fn latest_cosigned_block(getter: &impl Get) -> u64 {
Self::get(getter).unwrap_or_default().max(1)
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 16:57:21 -05:00
}
}
2023-04-20 05:04:08 -04:00
impl EventDb {
pub fn is_unhandled(getter: &impl Get, id: &[u8], index: u32) -> bool {
Self::get(getter, id, index).is_none()
Add a cosigning protocol to ensure finalizations are unique (#433) * Add a function to deterministically decide which Serai blocks should be co-signed Has a 5 minute latency between co-signs, also used as the maximal latency before a co-sign is started. * Get all active tributaries we're in at a specific block * Add and route CosignSubstrateBlock, a new provided TX * Split queued cosigns per network * Rename BatchSignId to SubstrateSignId * Add SubstrateSignableId, a meta-type for either Batch or Block, and modularize around it * Handle the CosignSubstrateBlock provided TX * Revert substrate_signer.rs to develop (and patch to still work) Due to SubstrateSigner moving when the prior multisig closes, yet cosigning occurring with the most recent key, a single SubstrateSigner can be reused. We could manage multiple SubstrateSigners, yet considering the much lower specifications for cosigning, I'd rather treat it distinctly. * Route cosigning through the processor * Add note to rename SubstrateSigner post-PR I don't want to do so now in order to preserve the diff's clarity. * Implement cosign evaluation into the coordinator * Get tests to compile * Bug fixes, mark blocks without cosigners available as cosigned * Correct the ID Batch preprocesses are saved under, add log statements * Create a dedicated function to handle cosigns * Correct the flow around Batch verification/queueing Verifying `Batch`s could stall when a `Batch` was signed before its predecessors/before the block it's contained in was cosigned (the latter being inevitable as we can't sign a block containing a signed batch before signing the batch). Now, Batch verification happens on a distinct async task in order to not block the handling of processor messages. This task is the sole caller of verify in order to ensure last_verified_batch isn't unexpectedly mutated. When the processor message handler needs to access it, or needs to queue a Batch, it associates the DB TXN with a lock preventing the other task from doing so. This lock, as currently implemented, is a poor and inefficient design. It should be modified to the pattern used for cosign management. Additionally, a new primitive of a DB-backed channel may be immensely valuable. Fixes a standing potential deadlock and a deadlock introduced with the cosigning protocol. * Working full-stack tests After the last commit, this only required extending a timeout. * Replace "co-sign" with "cosign" to make finding text easier * Update the coordinator tests to support cosigning * Inline prior_batch calculation to prevent panic on rotation Noticed when doing a final review of the branch.
2023-11-15 16:57:21 -05:00
}
pub fn handle_event(txn: &mut impl DbTxn, id: &[u8], index: u32) {
assert!(Self::is_unhandled(txn, id, index));
Self::set(txn, id, index, &());
2023-04-20 05:04:08 -04:00
}
}
2023-04-20 05:04:08 -04:00
db_channel! {
SubstrateDbChannels {
CosignTransactions: (network: NetworkId) -> (Session, u64, [u8; 32]),
2023-04-20 05:04:08 -04:00
}
}
impl CosignTransactions {
// Append a cosign transaction.
pub fn append_cosign(txn: &mut impl DbTxn, set: ValidatorSet, number: u64, hash: [u8; 32]) {
CosignTransactions::send(txn, set.network, &(set.session, number, hash))
}
2023-04-20 05:04:08 -04:00
}